首页 / 资源分类
  • 俄罗斯数学Shamrovskij2015ru.pdf

    А.Д. Шамровский ДУХ НАУКИ Запорожье 2015 2 Посвящается любимой внучкеПолинке и всем талантливым детям. А других не бывает! 3 ПРЕДИСЛОВИЕО чем эта книга? И почему у нее такое название? Можно сказать, что это агитация за науку. По крайней мере, попытка такой агитации. А нуждается ли современная наука в агитации за нее? На взгляд автора, нуждается и очень. Около полувека назад наука достигла пика популярности. Особенно это было связано с первыми полетами в космос и активным внедрением в жизнь новой модной науки – кибернетики. Полеты в космос продолжаются, кибернетика заполнила нашу жизнь разнообразными ноутбуками, планшетами и прочими смартфонами, а популярность науки стремительно падает. В чем дело? Можно назвать много причин самого разнообразного характера – политических, экономических, психологических и т.д. Здесь будет рассматриваться только одна причина – собственно научная. Смысл науки – творчество, созидание. Когда центр тяжести в науке переместился в сторону потребления, начались соответственные негативные явления. Под потреблением здесь понимается не только потребление материальных ценностей. Речь идет о более серьезных вещах. Например, некоему инженеру или научному работнику понадобилось решить какую-то математическую задачу. Трудно представить себе, чтобы данный человек начал вспоминать курс математики и самостоятельно решать данную задачу. В наше время все обстоит гораздо проще. В компьютер загружается соответствующая программа… и задача решена! Казалось бы, ну и что? Для того и существуют компьютеры, для того и составлены соответствующие программы… Так да не так. Человек использует чужую программу, составленную на основе неизвестно какого алгоритма и с использованием давно забытых математических понятий. Это и есть потребление. При таком подходе к решению задач из них исчезает творческая составляющая. Это весьма заметно отражается на психике современных люд

    上传时间:2024-03-09 页数:87

    403人已阅读

    (5星级)

  • 【俄罗斯数学教材选译】27.经典力学的数学方法【阿诺尔德】.pdf

    [General Information]����=������ѧ����ѧ��������4�棩����=B.��.��ŵ��������������ҳ��=416SS��=11532705��������=2006��01�µ�2������������Ȩǰ��Ŀ¼��һ����ţ����ѧ��һ��ʵ����ʵ��1��������ԭ���;�����ԭ����2��٤����Ⱥ��ţ�ٷ�����3����ѧϵ�������ڶ����˶����̵��о���4����һ���ɶȵ���ѧϵ��5���߶����ɶȵ���ѧϵ��6������������7���Ƕ�����8�������������е��˶����о���9����ά�ռ����ʵ����˶���10��n�ʵ���ѧϵ���˶���11�������Է����ڶ���������������ѧ����������ԭ����12�����ַ���13���������շ�������14�����õ±任��15�����ܶٷ�������16����ά�����������������ϵ�����������ѧ��17������Լ����18��΢��������19���������ն���ϵͳ��20��E��ŵ�ض�����21�����ʱ���ԭ��������������22�����Ի���23��С������24������Ƶ�ʵ���̬��25����������������������26���ڶ��ο�ϵ�е��˶���27����������������������28��������29��ŷ�����̡��հ������˶���������30����������������31��˯���ݺͿ����������������ܶ���ѧ������΢����ʽ��32������ʽ��33�����˻���34��΢����ʽ��35��΢����ʽ�Ļ�����36����΢���ڰ�����������37�������ϵ���������38�����ܶ������������ֲ�������39��ʸ��������������40�����ܶٺ�������������41����������42�����ж������ɶȵ���ѧϵ�еIJ���������43��һ����ͼ���ھ���������ʽ����44���Ӽ����ε����ֲ�������45���Ӽ���-�ε����ֲ�������������46���ݸ�˹ԭ����47���������ܶٵ��򷽳̵Ĺ��ܶ�-�ſɱȷ�����48�����ɺ�����ʮ���㶯���۽�����49���ɻ���������50��������-�DZ�����51��ƽ������52���㶯��ƽ������¼��¼1����������¼2��Ⱥ���󲻱������IJ��������������������嶯��ѧ��¼3���������ϵ���������¼4�Ӵ�������¼5���жԳ��ԵĶ���ϵͳ��¼6���ι��ܶٺ����ı�׼��ʽ��¼7���ܶٷ�������פ�����ͱչ츽���ı�׼��ʽ��¼8���������˶����㶯���ۺͿ¶�Ī������������¼9�Ӽ����ļ��ζ����������ƹ���Ӧ����¼10�����ڲ����ı���Ƶ�ʵ������Լ�������¼11�̲

    上传时间:2024-03-09 页数:435

    402人已阅读

    (5星级)

  • 俄罗斯数学Budylin2002ru.pdf

    РядыФурьеИнтегралыФурьеПредметныйуказательЛитератураВеб–страницаТитульныйлистJJIIJIСтраница1из127НазадПолныйэкранЗакрытьВыходРядыиинтегралыФурьеА.М.Будылинbudylin@mph.phys.spbu.ru26марта2002г.РядыФурьеИнтегралыФурьеПредметныйуказательЛитератураВеб–страницаТитульныйлистJJIIJIСтраница2из127НазадПолныйэкранЗакрытьВыходЧастьIРядыФурьеТригонометрическиерядыИсториявопросаЭкскурсвтеориюкомплексныхчиселОпределенияСлучайравномернойсходимостиТригонометрическиерядыФурьеПостановказадачиЭкскурсвтеориюунитарныхпространствРядыФурьенапространственепрерывных2π–периодическихфункцийСверткапериодическихфункцийСходимостьрядовФурьеПонятиеополнотеизамкнутостиортонормированнойсистемыЗамечанияпоповодусходимостиИнтегрированиеидифференцированиерядовФурьеРядыФурьепериодическихфункцийспериодомT=2lРазложениечетныхинечетныхфункцийВещественнаяформатригонометрическогорядаФурьеРядыФурьеИнтегралыФурьеПредметныйуказательЛитератураВеб–страницаТитульныйлистJJIIJIСтраница3из127НазадПолныйэкранЗакрытьВыходПонятиеобулучшениискоростисходимостирядаФурьеПримерыиприложенияПериодическиерешенияЗадачаоколебанияхструныНетригонометрическиерядыФурьеКраевыезадачитеориидифференциальныхуравненийНормальнаяформакраевойзадачиРегулярнаязадачаШтурма–ЛиувилляПолнотасобственныхфункцийрегулярнойзадачиШтурма–ЛиувилляТеоремаШтурмаРядыФурьеИнтегралыФурьеПредметныйуказательЛитератураВеб–страницаТитульныйлистJJIIJIСтраница4из127НазадПолныйэкранЗакрытьВыход1.Тригонометрическиеряды1.1.ИсториявопросаСчитается,чтосамыйпервыйтригонометрическийрядбылнаписанЭйлером.Вего«Дифференциальномисчислении»1755года1вглаве«Опредставлениифункцийрядами»можнонайтиследующееравенствоπ−x2=sinx+sin2x2+sin3x3+···,x∈(0,2π).ПриблизительновэтожевремяДаниилБернулли,всвязисзадачейоколебанииструны,впервыевысказываетуверенностьввозможностианалитическоговыраже-ния«любойлинии»наотрезке[0,2π]рядомизсинусовикосинусовкратныхдуг.Однакоположениездесьвзначительнойстепениоставалосьневыясненнымвплотьдо1805года2,когдаЖанБатистЖозефФурьевстатьеораспространениитеплавнутритверд

    上传时间:2024-03-09 页数:127

    402人已阅读

    (5星级)

  • CECS339-2013 地源热泵式沼气发酵池加热技术规程.docx

    中国代刻大服电话:400-670-9365网 站 :ww.cnP365.0rg刮涂屋输数码查真伪CECS 339:2013中国工程建设协会标准地源热泵式沼气发酵池加热技术规程Technical specification for heating biogasreactor by ground source heat pump中国计划出版中国工程建设协会标准地源热泵式沼气发酵池加热技术规程Technicalspecificationforheatingbiogas reactorby groundsourceheatpumpCECS339:2013主编单位:同济 大 学批准单位:中国工程建设标准化协会施 行 日 期 : 2 0 1 3 年8 月1 日中国计划出版社2013北京中国工程建设协会标准地源热泵式沼气发酵池加热技术规程CECS339:2013☆中国计划出版社出版网址:www.jhpress.com地址:北京市西城区木樨地北里甲11号国宏大厦C 座 3 层邮政编码:100038电话:(010)63906433(发行部)新华书店北京发行所发行廊坊市海涛印刷有限公司印刷850mm×1168mm1/321.5 印张34千字2013年7月第

    上传时间:2025-06-05 页数:45

    400人已阅读

    (5星级)

  • CJT286-2008 城市轨道交通轨道橡胶减震器.doc

    ICS 45.040S05中华人民共和国城镇建设行业标准CJ/T286—2008城市轨道交通轨道橡胶减振器Track rubber absorber for urban failway traffic2 0 0 8 - 0 8 - 1 1 发 布中华人民共和国住房和城乡建设部发 布2008-12-01实施CJ/T 286—2008前 言本标准由住房和城乡建设部标准定额研究所提出。本标准由住房和城乡建设部城市轨道交通标准技术归口单位建设部地铁与轻轨研究中心归口。本标准负责起草单位:中国船舶重工集团公司第七一一研究所。本标准参加起草单位:上海市政工程设计研究总院、上海申通轨道交通研究咨询有限公司。本标准主要起草人:沈建平、任庭柱、宋键、张小华、吴坚华、赵大鹏、庄国华。ICJ/T 286—2008城市轨道交通轨道橡胶减振器1范围本标准规定了城市轨道交通轨道橡胶减振器(以下简称减振器)的要求、试验方法、检验规则、标志、包装、运输和贮存。本标准适用于城市轨道交通轨道橡胶减振器的生产和检验。2规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本

    上传时间:2025-06-15 页数:9

    399人已阅读

    (5星级)

  • 俄罗斯数学Budylin2001ru.pdf

    ПостановканекоторыхВведениеввариационныйметодУравнениеЭйлера–ЛагранжаПриложенияОбобщенияЗадачинаусловныйэкстремумПервоенеобходимоеусловиеСемействаэкстремалейДинамикачастицПроблемаминимумаСуществованиеминимумаЛеммаГейне-БореляВеб–страницаТитульныйлистJJIIJIСтраница1из197НазадПолныйэкранЗакрытьВыходВариационноеисчислениеА.М.Будылинbudylin@mph.phys.spbu.ru21мая2001г.ПостановканекоторыхВведениеввариационныйметодУравнениеЭйлера–ЛагранжаПриложенияОбобщенияЗадачинаусловныйэкстремумПервоенеобходимоеусловиеСемействаэкстремалейДинамикачастицПроблемаминимумаСуществованиеминимумаЛеммаГейне-БореляВеб–страницаТитульныйлистJJIIJIСтраница2из197НазадПолныйэкранЗакрытьВыходЧастьIНеобходимыеусловияэкстремумаПостановканекоторыхвариационныхзадачОтысканиегеодезическихНаплоскостиНапроизвольнойповерхностиЗадачаобрахистохронеЗадачаонаименьшейповерхностиКатеноидПроблемаПлатоПростейшаявариационнаязадачаПростейшаяизопериметрическаязадачаЗадачанавигацииВведениеввариационныйметодПроисхождениеназвания«вариационноеисчисление»СовременнаятерминологияОсновнаялеммаОсновнойвариантОбобщениепогладкостиПостановканекоторыхВведениеввариационныйметодУравнениеЭйлера–ЛагранжаПриложенияОбобщенияЗадачинаусловныйэкстремумПервоенеобходимоеусловиеСемействаэкстремалейДинамикачастицПроблемаминимумаСуществованиеминимумаЛеммаГейне-БореляВеб–страницаТитульныйлистJJIIJIСтраница3из197НазадПолныйэкранЗакрытьВыходОбобщениенакратныеинтегралаЛеммаДюбуа–РеймонаУравнениеЭйлера–ЛагранжаПостановкавопросаВариацияинтегральногофункционалаЭкскурсвдифференциальноеисчислениеДифференцированиеинтегралапопараметруЦепноеправилоУравнениеЭйлера–ЛагранжаВыводуравненияЗамечанияАнализуравненияЭйлера–ЛагранжаFнезависитотyFнезависитотxСлучайполнойпроизводнойF=ddxG(x,y)ПриложенияГеодезическиеУравнениеЭйлераЧастныйслучай,первыйвариантЧастныйслучай,второйвариантГеодезическиенасфереПостановканекоторыхВведениеввариационныйметодУравнениеЭйлера–ЛагранжаПриложенияОбобщенияЗадачинаусловныйэкстремумПервоенеобходимоеус

    上传时间:2024-03-09 页数:197

    395人已阅读

    (5星级)

  • 俄罗斯数学Algazin2002ru.pdf

    1С. Д. АлгазинЧисленные алгоритмы без насыще-ния в классических задачах матема-тической физикиМОСКВА НАУЧНЫЙ МИР 2002 2 УДК 519.6 ББК – 22.193A45С. Д. Алгазин А45 Численные алгоритмы без насыщения в классических задачах математи-ческой физики.– М.: Научный Мир, 2002.– 155 с. ISBN 5-89176-184-XВ книге рассматривается новый подход к конструированию алгоритмов мате-матической физики. В основном рассматриваются спектральные задачи для обыкновенных дифференциальных уравнений, уравнения Лапласа (три крае-вых задачи) и бигармонического уравнения (две краевые задачи).Классический подход, основанный на применении методов конечных разно-стей и конечных элементов, обладает существенными недостатками – он не реагирует на гладкость отыскиваемого решения. Для разностной схемы p-го порядка в независимости от гладкости отыскиваемого решения погрешность метода - O(hP). Гладкость решения определяется входными данными задачи. Рассматриваемые в книге алгоритмы свободны от этих недостатков. Предлагаемые алгоритмы автоматически настраиваются на гладкость отыски-ваемого решения и их точность тем выше, чем большим условиям гладкости отвечает отыскиваемое решение. Для рассматриваемых задач на собственные значения для обыкновенных дифференциальных уравнений экспериментально показано, что убывание погрешности - экспоненциально. Этого невозможно добиться методами конечных разностей и конечных элементов. Для двумерных задач громоздкие вычисления затабулированы в таблицах не-большого объёма, что позволяет разработать компактные алгоритмы решения поставленных задач. Приводятся программы на фортране. Монография представляет интерес для студентов и аспирантов физико-технических и математических специальностей, специалистов по численным методам, а также для научных сотрудников и инженеров, интересующихся но-выми методами численного решения задач математической физики. УДК 519.6 ББК- 22.193 ISBN 5-89176-184-X © Алгазин С. Д., 2002 © Научный мир, 2002

    上传时间:2024-03-09 页数:177

    395人已阅读

    (5星级)

  • 俄罗斯数学Nezbajlo_alg_2007ru.pdf

    Т.Г.НЕЗБАЙЛОТЕОРИЯНАХОЖДЕНИЯКОРНЕЙАЛГЕБРАИЧЕСКИХУРАВНЕНИЙ(всимвольномпредставлении)Санкт-ПетербургКОРОНА-Век2007УДК372.83735H44Условныеобозначения:hypergeom—гипергеометрическаяфункция;CnkилиC(n,k)—биномиальнаяфункция;Р—функцияПохгаммера.kGlllm==∑1..0()f(k1,k2..km)—означаетвложениепоследо-вательныхсуммснижниминдексомсуммирования,меняющимсяотk1=0доkm=0,иверхнимзначениемотG(1)доG(m).Например:fkkkkGlkGkGkll(,..)..()()()12400102014123=====∑∑∑=GkGfkkk()()(,..)3041244∑∑=итакдалее.δ(0)=1,δ(i)=0,i=1,2,3..N—символКронекера.sinh()x—гиперболическаяфункция;arcsin()ln()hxxx=++21—обратнаягиперболиче-скаяфункция.ISBN978-5-903383-42-9©НезбайлоТ.Г.,2007СОДЕРЖАНИЕВведение.51.КРАТКИЕИСТОРИЧЕСКИЕАСПЕКТЫ72.КВАДРАТНЫЕУРАВНЕНИЯ.102.1.n-Образквадратногоуравнения—2.2.Свойстваn-образа112.3.Определениеявноговидакоэффициентовn-образа.142.4.Определениеобщихформулдлякорнейквадратногоуравнения.162.5.Приложение193.КУБИЧЕСКИЕУРАВНЕНИЯ.213.1.Преобразования.—3.2.n-Образкубическогоуравнения233.3.Свойстваn-образа263.4.Определениеобщихформулдлякоэффициентаn-образа.283.5.Гипергеометрическаяформапредставленияформулдлякоэффициентовn-образа..363.6.Выводформулдлякорнейкубическогоуравнения.463.6.1.Примеры.493.7.Преобразованиеформулдлякорнейкубическогоуравнения.583.7.0.Способинверсиииндексовсуммирования..59б3.7.1.Преобразованиегипергеометрическихфункций.633.7.2.Способпреобразованияуравнения(3.1)квиду,прикоторомкоэффициента1=0713.7.2.1.ПреобразованиекоэффициентаА1(п)723.7.2.2.ПреобразованиекоэффициентаА2(п)733.7.2.3.ПреобразованиекоэффициентаА3(п)743.8.Приложение..814.АЛГЕБРАИЧЕСКИЕУРАВНЕНИЯЧЕТВЕРТОЙСТЕПЕНИ844.1.Преобразования.—4.2.n-Образалгебраическогоуравнениячетвертойстепени..854.3.Свойстваn-образа.

    上传时间:2024-03-09 页数:208

    395人已阅读

    (5星级)

  • 俄罗斯数学VasilevSimak2008ru.pdf

     НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК УКРАИНЫ ИНСТИТУТ ПРОБЛЕМ МОДЕЛИРОВАНИЯ В ЭНЕРГЕТИКЕ им. Г.Е.Пухова Отделение гибридных моделирующих и управляющих систем в энергетике В.В.Васильев, Л.А.Симак ДРОБНОЕ ИСЧИСЛЕНИЕ И АППРОКСИМАЦИОННЫЕ МЕТОДЫ В МОДЕЛИРОВАНИИ ДИНАМИЧЕСКИХ СИСТЕМ Киев-2008 УДК 621.372.061  Рецензент: чл.-корр. НАН Украины, д.т.н., профессор Таранов С.Г.Дробное исчисление и аппроксимационные методы в модели-ровании динамических систем. Научное издание / В.В.Васильев, Л.А.Симак. — Киев, НАН Украины, 2008. — 256 с. ISBN 978-966-02-4384-2Книга посвящена аппроксимационно-операционным методам моделирования динамических систем дробного и смешанного порядков. Рассмотрены методы аппроксимации сигналов обобщенными полиномами с различными системами базисных функций, построение на основе этих методов операционных исчислений неклассического типа и их применений к математическому и компьютерному моделированию динамических систем, описываемых интегро-дифференциальными уравнениями, включающими интегро-дифференциальные операторы как целых, так и дробных порядков. Приведен сопоставительный анализ дробного исчисления и классического математического анализа. Обсуждаются вопросы реализации интеграторов нецелых порядков и применения дробного исчисления в различных областях науки, техники и естествознания. Изложение материала сопровождается иллюстративными примерами. Для специалистов в области математического и компьютерного моделирования и управления, занимающихся исследованиями динамических систем, обработкой сигналов, а также студентов и аспирантов соответствующих специальностей.The bookis devoted to the approximated and operational methods of modeling and simulation for integer and fractional order dynamic systems. The methods of signal approximation via generalized polynomials with various basic functions have been considered. These approximated methods initiate operational calculus non-classical type which is applied to the dynamic system modeli

    上传时间:2024-03-09 页数:256

    394人已阅读

    (5星级)

  • GB18588-2001 混凝土外加剂中释放氨的限量.doc

    ICS91.100.30Q12中 华 人 民 共 和 国 国 家 标准GB 18588—2001混凝土外加剂中释放氨的限量Limit of ammonia emitted from the concrete admixtures2 0 0 2 - 0 1 - 0 1 实 施中华人民共和国发 布1252001-12-10发布国家质量监督检验检疫总局GB 18588-2001前 言本标准第4章为强制性条款,其余为推荐性条款。本标准的附录A 为规范性附录。自2002年1月1日起,生产企业生产的产品应执行该国家标准,过渡期6个月;自2002年7月1日起,市场上停止销售不符合该国家标准的产品。本标准由中国建筑材料工业协会提出。本标准由全国水泥制品标准化技术委员会归口。本标准负责起草单位:中国建筑材料科学研究院环境工程研究所。本标准参加起草单位:浙江五龙化工股份有限公司、北京中岩特种工程材料公司、吉林省一建集团有限公司、北京城建集团构件厂、中国建筑材料科学研究院水泥科学与新型建筑材料研究所。本标准主要起草人:萧瑛、谢钰、宋治华、艾萍、黄慧芳、沈鑫根、聂卿。126GB 18588-2001混凝土外加剂中释放氨的限量1范围本标准规定了混凝土外加剂中释放氨的限量。本标准适用于各类具有室内使用功能的建筑用、能释放氨的混凝土外加剂,不适用于桥梁

    上传时间:2025-06-19 页数:5

    393人已阅读

    (5星级)

  • 俄罗斯数学AndrianovDanishevskijIvankov2010ru.pdf

    Министерство образования и науки УкраиныПриднепровская государственная академия строительства и архитектуры И.В. Андрианов, В.В. Данишевский, А.О. Иванков АСИМПТОТИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ КОЛЕБАНИЙ БАЛОК И ПЛАСТИН Дніпропетровськ „Свідлер 2010 ДніпропетровськПДАБА2010УДК 539.3ББК 22.251А65Андрианов И.В., Данишевский В.В., Иванков А.О. Асимптотические методы в теории колебаний балок и пластин. – Днепропетровск: Приднепровская государственная академия строительства и архитектуры, 2010. – 216 с.В монографии рассматриваются асимптотические методы решения задач колебаний балок и пластин. Основное внимание уделено гомотопическому методу возмущений, который основывается на введении искусственного малого параметра. Исследованы линейные колебания конструкций со смешанными граничными условиями, а также нелинейные колебания систем с распределенными параметрами, в которых возникают внутренние резонансы. Для научных работников, инженеров, студентов старших курсов.В монографії розглядаються асимптотичні методи розвязання задач коливань балок та пластин. Головну увагу приділено гомотопічному методу збурень, що ґрунтується на введені штучного малого параметру. Досліджено лінійні коливання конструкцій зі змішаними граничними умовами, а також нелінійні коливання систем з розподіленими параметрами, в яких виникають внутрішні резонанси. Для наукових працівників, інженерів, студентів старших курсів. ББК 22.251Рекомендовано до друку Вченою радою Придніпровськоїдержавної академії будівництва та архітектури,протокол № 5 від 22 грудня 2009 р.Рецензенти:доктор технічних, професор Е.М. Квашадоктор фізико-математичних наук, професор А.М. ПасічникISBN 978-966-323-064-1© І.В. Андріанов, В.В. Данішевський, А.О. Іванков, 2010© Придніпровська державна академіябудівництва та архітектури, 2010 А653ОГЛАВЛЕНИЕПредисловие 5 Введение 6 0.1. Методы расчета пластин со сложными граничнымиусловиями 0.2

    上传时间:2024-03-09 页数:217

    392人已阅读

    (5星级)

  • DLT974-2005 带电作业用工具库房.docx

    ICS 13.260 K09备案号:16978-2006中 华 人 民 共 和 国 电 力 行 业 标准DL/T 974—2005带电作业用工具库房Depot of tools for live-working2005-11-28发布2 0 0 6 - 0 6 - 0 1 实施中华人民共和国国家发展和改革委员会发布DL/T 974—2005目 次前言 .. IⅡ1范围 ..12规范性引用文件 .13术语和定义 . 14一般要求 .

    上传时间:2025-06-05 页数:8

    389人已阅读

    (5星级)

  • DLT938-2005 火电厂排水水质分析方法.docx

    ICS 27.100F24备案号:15337-2005中 华 人 民 共 和 国 电 力 行 业 标 准DL/T938—2005代替SD 164—1985火电厂排水水质分析方法Analytical method for effluent quality of thermal power plant2005-02-14发布 2005-06-01实施中华人民共和国国家发展和改革委员会发布DL/ T 938—2005目 次前言IⅡ1范围 .12 规范性引用文件 13术语和定义 .

    上传时间:2025-06-18 页数:12

    388人已阅读

    (5星级)

  • 俄罗斯数学Kazimirov2002ru.pdf

    Математическийанализконспектлекцийдляпервогокурсаспециальности«физика»Н.И.КазимировПетрозаводск2002Оглавление1Базовыепонятия71.1Множестваиоперациинадмножествами.71.1.1понятиемножество.71.1.2способыопределениямножеств81.2Функции.91.2.1способызаданияфункций101.2.2последовательностиикортежи.101.3Действительныечисла.111.3.1иерархиячисловыхмножеств.111.3.2определениедействительныхчисел.121.3.3ограниченныемножества.131.4Вопросыдляколлоквиума..142Теорияпределов152.1Пределпоследовательности.152.1.1определениеисвойства,числоe..152.1.2бесконечномалые,бесконечнобольшиевеличины,ихие-рархия.162.1.3частичныепределы..162.2Пределыинепрерывностьфункций.172.2.1открытыеизамкнутыемножества.172.2.2пределфункции.182.2.3непрерывностьфункции.192.2.4монотонныефункции202.2.5свойстванепрерывныхфункций..212.2.6элементарныефункции..212.2.7замечательныепределы..222.2.8равномернаянепрерывность..222.3Вопросыдляколлоквиума..223Дифференциальноеисчисление243.1Производнаяидифференциал..243.1.1производная243.1.2дифференциал..243.1.3независимостьформыпервогодифференциала..24ОГЛАВЛЕНИЕ33.1.4дифференцируемостьобратнойфункции243.1.5производныевысшихпорядков253.1.6дифференциалывысшихпорядков.253.2Основныетеоремыодифференцируемыхфункциях253.2.1теоремыосреднемзначении..253.2.2правилоЛопиталя263.2.3тео

    上传时间:2024-03-09 页数:92

    388人已阅读

    (5星级)

  • 俄罗斯数学Belousov2006ru.pdf

    ИНСТИТУТПРИКЛАДНОЙФИЗИКИ,АКАДЕМИИНАУКРЕСПУБЛИКИМОЛДОВАИ.В.БЕЛОУСОВМАТРИЦЫиОПРЕДЕЛИТЕЛИучебноепособиеполинейнойалгебреИзданиевторое,исправленноеидополненноеКишинев:2006УДК519.612(075) B–43БелоусовИ.В.МАТРИЦЫИОПРЕДЕЛИТЕЛИ:учебноепособиеполинейнойалгебре./Кишинев:2006/.Данноепособиепредназначенодляучащихсялицеев,колледжейистудентовнематематическихфакультетовуниверситетов,изучающихлинейнуюалгебру.По-дробноеизложениерассматриваемоговпособииматериала,детальноедоказатель-ствовсехбезисключениятеорем,следствийизамечанийсопровождаетсябольшимколичествомпримеров,приводимыхсрешениями.Всеэтоделаетпособиедоступ-нымдляпониманиянеподготовленнымчитателем.Дляегочтениядостаточнозна-ниялишьэлементарнойматематики. Редактор:член–корреспондентАНРМВ.И.Арнаутовc И.В.Белоусов,2006Оглавление1Основныесведенияоматрицах4 2Операциинадматрицамииихсвойства.62.1Умножениематрицыначисло6 2.2Сложениематриц.6 2.3Вычитаниематриц.7 2.4Умножениематриц11 2.5Возведениевстепень..19 2.6Транспонированиематрицы.233Определителиквадратныхматриц.28 4Свойстваопределителей.354.1Операциятранспонирования.35 4.2Перестановкастрокистолбцов..37 4.3Линейность..39 4.4Определительпроизведенияматриц445Минорыиалгебраическиедополнения..46 6Вычислениеопределителей526.1Приведениеопределителяктреугольномувиду..526.2Понижениепорядкаопределителя.557Обратнаяматрица..587.1Необходимоеидостаточноеусловиясуществованияобратнойматрицы597.2Нахождениеобратнойматрицыспомощьюэлементарныхпре-образованийстрок.627.3НахождениеобратнойматрицыметодомЖордана–Гаусса..687.4Свойстваневырожденныхматриц.

    上传时间:2024-03-09 页数:101

    388人已阅读

    (5星级)

  • 俄罗斯数学Vinogradov2017ru.pdf

    МЕЖОТРАСЛЕВОЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНСТИТУЦИОНАЛЬНОГО КОНСАЛТИНГА Виноградов А.Ю. Численные методы решения жестких и нежестких краевых задач Монография Москва 2017УДК 51(075.8) ББК 22.311я73 В 49 Рекомендовано к публикации ученым советом Межотраслевого научно-исследовательского института институционального консалтинга. Рецензенты: Гамонов Евгений Викторович – доктор физико-математических наук, профессор, старший научный сотрудник SITU IBC Варламов Антон Олегович – кандидат технических наук, доцент, старший научный сотрудник АНОО ДПФО "НИПИ" Виноградов А.Ю. Численные методы решения жестких и нежестких краевых задач: монография / А.Ю. Виноградов. – Москва: National Research, 2017. 112с. ISBN 978-5-9908927-1-2 Предлагаются: Усовершенствование метода ортогональной прогонки С.К. Годунова, 3 метода для нежестких случаев краевых задач, 2 метода для жестких случаев краевых задач, 1 метод расчета оболочек составных и со шпангоутами. По сравнению с монографией «Методы решения жестких и нежестких краевых задач» добавлен материал усовершенствования метода С.К.Годунова, добавлено усовершенствование метода дифференциальной прогонки А.А.Абрамова, добавлен метод для краевых задач для обыкновенных дифференциальных уравнений только с четными производными, добавлено графическое предложение метода численного решения дифференциальных уравнений. Сохранены 3 программы на С++, которые реализуют 2 лучших метода из изложенных. Публикуется в авторской редакции. ISBN 978-5-9908927-1-2 © А.Ю. Виноградов, 2017В 49Оглавление Введение .. 5 Глава 1. Известные формулы теории матриц для обыкновенных дифференциальных уравнений . 10 Глава 2. Усовершенствование метода ортогональной прогонки С.К. Годунова для решения краевых задач с жесткими обыкновенными дифференциальными уравнениями .

    上传时间:2024-03-09 页数:112

    388人已阅读

    (5星级)

  • 俄罗斯数学GorbunovPolezhaev2008ru.pdf

    РОССИЙСКАЯ АКАДЕМИЯ НАУК УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУКИНСТИТУТ ПРОБЛЕМ МЕХАНИКИ ИМ. А.Ю. ИШЛИНСКОГО РАНА.А. Горбунов, В.И. ПолежаевМЕТОД ВОЗМУЩЕНИЙ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ КОНВЕКЦИИ ДЛЯ ЗАДАЧИ РЕЛЕЯ В ЖИДКОСТЯХ C ПРОИЗВОЛЬНЫМ УРАВНЕНИЕМ СОСТОЯНИЯ 8Препринт № 897 Москва, 2008 г. - 2 - ВведениеРазвитие техники численного моделирования на основе нестационар-ных уравнений Навье-Стокса для сжимаемых сред, позволившее преодолеть в последние годы трехмерный барьер в моделировании процессов конвективного теплообмена, наряду с широкими возможностями в получении конкретных результатов в практических задачах, которые реализованы и имеют массовое применение даже в коммерческих компьютерных программах, делает актуальным развитие аналитических методов для анализа и интерпретации результатов численного моделирования. Это важно для изучения тонкой структуры течений, процессов переноса, проверки достоверности их численной реализации и особенно актуально для задач конвекции при реальных уравнениях состояния вблизи критической термодинамической точки. В механике вязких сред (см. например, [1]) для замыкания системы уравнений Навье-Стокса обычно применяется уравнение Клайперона, являющееся уравнением состояния идеального или совершенного газа. Некоторым обобщением этого широко распространенного уравнения состояния является уравнение состояния нормального газа, широко применяемого в газодинамике [2]. Однако, эти уравнения не знают о055(02)2  Институт проблем механики Российской академии наук 2008 г.- 3 - таких реальных свойствах жидкости, как критическая 8(термодинамическая) точка. В то же время для реальных газов, особенно в околокритическом состоянии, уравнение Ван-дер-Ваальса, которое применяется в численных моделях конвекции, начиная с 90-х годов [3], недостаточно строго описывает связь между термодинамическими параметрами в непосредственной близости от критической точки (см., например [4]). Более точно такая связь определяется

    上传时间:2024-03-09 页数:50

    386人已阅读

    (5星级)

  • CJ247-2007 城镇污水处理厂污泥泥质.doc

    1CS 93.030 P 41中华人民共和国城镇建设行业标准CJ247—2007城镇污水处理厂污泥泥质Quality of sludge from municipal wastewater treatment plant2007-01-29发布2007-10-01实施中华人民共和国建设部发 布CJ 247—2007前言为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境保护法》,促进城镇污水处理厂的建设和管理,防止污水处理厂污泥的二次污染,保障人体健康,维护良好的生态环境,制定本标准。本标准第4.2.1条为强制性的,其余为推荐性的。本标准为首次发布。本标准由中华人民共和国建设部标准定额研究所提出。本标准由中华人民共和国建设部给水排水产品标准化技术委员会归口。本标准由北京市市政工程管理处负责起草。本标准的主要起草人:杨树丛、曹洪林、王春顺、蒋兰、赵晓光、封勇、曹佳红、刘爽、江涛、李文宏、 高燚、林毅。ICJ247—2007城镇污水处理厂污泥泥质1 范围本标准规定了城镇污水处理厂污泥中污染物的控制项目和限值。

    上传时间:2025-06-15 页数:6

    384人已阅读

    (5星级)

  • 俄罗斯数学Vorozhcov2000ru.pdf

    © Russian Academy of Sciences, 0.511.520.20.40.60.8 0.511.522.50.20.40.60.8 0.511.522.50.20.40.60.8 0.511.520.20.40.60.810 .511. 520.20.40.60.81 0.511.522.50.20.40.60.8 0.511.520.20.40.60.8 Е.В. ВОРОЖЦОВ СБОРНИК ЗАДАЧПО ТЕОРИИ РАЗНОСТНЫХ СХЕМ УЧЕБНОЕ ПОСОБИЕ НОВОСИБИРСК 2000 1Министерство образования Российской Федерации НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ _____________________________________________________________________ Е.В. ВОРОЖЦОВ СБОРНИК ЗАДАЧ ПО ТЕОРИИ РАЗНОСТНЫХ СХЕМ Утверждено Редакционно-издательским советом университета в качестве учебного пособия НОВОСИБИРСК 20002УДК539.3 (0.76)В 751 �Р е ц е н з е н т ы: В.В. Остапенко, д-р физ.-мат. наук, проф. А.Д. Рычков, д-р техн. наук, проф. Работа подготовлена на кафедре аэрогидродинамики для магистрантов ФЛА Ворожцов Е.В.В 751Сборник задач по теории разностных схем: Учеб. пособие. — Но-восибирск: Изд-во НГТУ, 2000. — 41 с.Учебное пособие разработано с учетом программы курса лекций, утвержденной кафедрой аэрогидродинамики НГТУ, и содержит решения разнообразных задач современной теории разностных методов механики сплошных сред. УДК 539.3 (0.76)© Новосибирский государственный технический университет, 2000 г.3 Предисловие На протяжении ряда лет автор читает для магистрантов факультета летательных аппаратов НГТУ курс лекций Разностные методы решения задач механики сплошных сред. С целью более глубокого усвоения материалов данного курса автор предлагал магистрантам на экзаменах задачи по теории разностных методов. Эти задачи относительно просты и не требуют приме-нения ЭВМ для их решения, а для некоторых из них даже не нужно брать в руки

    上传时间:2024-03-09 页数:43

    384人已阅读

    (5星级)

  • 俄罗斯数学ZubelevichPavlovskij2008ru.pdf

    О.Э.Зубелевич,О.В.ПавловскийМетодическоепособиепокурсу¾Элементытензорногоанализа¿ББК22.14B93УДК530.1ЗубелевичО.Э.,ПавловскийО.В.Методическоепособиепокурсу¾Элементытензорногоанализа¿вдвухча-стях.–М.:ИТЭФ,2008–50с.ISBN5–87911–107–5Данноепособиесоставленопоматериаламодноименногокурсалекцийдлястудентовфизическихспециальностейуниверситетов.Впервойчастиизучаютсяэлементыполи-линейнойалгебры,необходимыедляизучениятензорныхобъектовдифференциальнойгеометрии.Вовторойчастиизучаетсяаппаратдифференциальногоисчислениятензо-ров,использующийсявмеханикесплошнойсредыиобщейтеорииотносительности.Рас-смотреныследующиетемы:дифференциальныеформыивнешнеедифференцирование,производнаяЛи,связностьиковариантноедифференцирование,тензорРимана.Списоклит.–8наим.ISBN5–87911–107–5Содержание1Часть1:Полилинейнаяалгебра21.1.Введение..21.2.Обозначенияиопределения21.3.Сопряженноепространствоивзаимныйбазис..31.4.Преобразованиекоординатвекторовилинейныхфункционаловпризаменебазиса.41.5.Тензорноепроизведение61.6.Тензорывлинейномпространстве91.7.Метрическийтензор:поднятиеиопусканиеиндексов.121.8.Кососимметрическиеформы131.9.Тензорныевеличины(тензорныеплотности)172Часть2:Дифференциальноеисчислениетензоров222.1.Введение..222.2.Понятиеm-мернойповерхности.222.3.Заменыкоординатнаповерхности242.4.Тензорныеполянаповерхности.252.5.ПроизводнаяЛи.262.6.Дифференциальныеформы292.7.Поведениековариантныхтензоровприотображениях332.8.Связность,тензоркручения342.9.Связность,согласованнаясметрикой.392.10.ТензоркривизныРимана..412.11.Ковариантноедифференц

    上传时间:2024-03-09 页数:50

    384人已阅读

    (5星级)

客服

客服QQ:

2505027264


客服电话:

18182295159(不支持接听,可加微信)

微信小程序

微信公众号

回到顶部