DCBA从正面看从上面看(北师大版)江西省吉安市万安县七年级数学上册期末试卷及答案说明:本卷共有七个大题24个小题,全卷满分120分,考试时间120分钟.答案要求写在答题卷上,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分)1.下列统计中方便用普查方法的是()A.全国初中生的视力情况 B.某校七年级学生的身高情况C.某厂生产的节能灯管的使用寿命D.中央台春晚节目的收视率2.如右图,用平面截圆锥,所得的截面图形不可能是()A.B. C.D.3.将半圆绕它的直径旋转一周形成的几何体是()A.圆柱B.圆锥 C.球 D.不确定4.下列说法中,正确的是()A.若AP=PB,则点P是线段AB的中点B.射线比直线短C.连接两点的线段叫做两点间的距离 D.过六边形的一个顶点作对角线,可以将这个六边形分成4个三角形5.扇形统计图中,45°圆心角的扇形表示的部分占总体的()A.12.5%B.25% C.30% D.45%6.甲、乙、丙三家超市为标价相同的同一种商品搞促销活动,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%.此时顾客要想购买这种商品更划算,应选择的超市是()A.甲 B.乙C.丙D.都一样二、填空(本大题共8小题,每小题3分,共24分)7.计算:-1-2=.8.一天的最低温度是-2℃,最高温度是a℃,则这天的温差是℃.9.2013年1-11月份,万安县500万元以上固定资产投资项目完成投资451460万元,同比增长22.9%.用科学计数法表示451460=.10.若(5x+3)与(-2x+9)互为相反数,则x=.11.计算:'03224×2= .12.如图,在数轴上有A、B、C、D四个点,且BC=2AB=3CD,若A、D两点表示的数的分别为-5和6,那么B、C两点所表示的数分别是.13.化简:)12()3(222aaaa= . 14.用小立方块搭成的几何体从正面和上面看的视ODCBA图如图,这个几何体中小立方块的个数可以是.三、(本大题共2小题,每小题5分,共10分)15.画数轴,并把-3.5、|-3|、-(-1.5)、23在数轴上标记出来.16.小明说他家在一个小山村,地图上都没有标记,但知道在万安县城的北偏东30°方向,在窑头镇的南偏东45°方向,请你在图中画一画,找出他家所在的位置并标记为A.来源:http://www.bcjy123.com/tiku/四、(本大题共2小题,每小题6分,共12分)17.计算:322211323211)()(18.解方程:52221xx五、(本大题共2小题,每小题8分,共16分)19.如图,∠AOD=90°,∠AOB比∠BOD小20°,OC是∠AOD的平分线,求∠BOC的度数.20.某剧团为希望工程募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款10805元.问成人票和学生票各售出多少张?六、(本大题共2小题,每小题9分,共18分)21.如图,在长方形纸片上剪下如图中的阴影部分(中间的四边形是正方形),恰好能围成一圆柱,设圆的半径为r.DB 50%C15%A 30%104050806070D302090100人数选项ABC(1)用含r的代数式表示圆柱的体积V;(2)当r=5cm,圆周率π取3.14时,求圆柱的体积V.22.某剧院座位的一部分为扇形状,座位数按下列方式设置:排数123456…座位数50535659…按这种方式排下去(1)第5、6排各有多少个座位?完成上表填空;(2)第n排有多少个座位?来源:http://www.bcjy123.com/tiku/(3)在(2)的代数式中,当n为17时,有多少个座位?七、(本大题共2小题,第23小题10分,第24小题12分,共22分)23.为了解学生参加体育锻炼活动的情况,学校对学生进行随机抽样调查,其中一个问题是你平均每天参加体育锻炼活动的时间是多少?共有4个选项:A.1.5小时以上;B.1~1.5小时;C.0.5~1小时;D.0.5小时以下.请你根据统计图提供的信息,解答以下问题: (1)本次一共调查了多少名学生? (2)在下面条形统计图中将选项B的部分补充完整; (3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体
上传时间:2023-04-30 页数:6
416人已阅读
(5星级)
中考冲刺:观察、归纳型问题—巩固练习(提高)【巩固练习】一、选择题1.(2015秋•扬州校级月考)如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种2. 在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2012个正方形的面积为() A. B. C. D. 3. 边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为() A. B. C. D. 二、填空题14.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn-Sn-1= .5.如图的平面直角坐标系中有一个正六边形ABCDEF,其中C、D的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x轴向右滚动,则在滚动过程中,这个六边形的顶点A、B、C、D、E、F中,会过点(45,2)的是点.6.(2016春•固始县期末)如图所示,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2.第三次将三角形OA2B2变换成三角形OA3B3,已知A(1,2),A1(2,2),A2(4,2),A3(8,2),B(2,0),B1(4,0),B2(8,0),B3(16,0)..(1)观察每次变换前后的三角形有何变化?找出规律再将三角形将△OA3B3变换成三角形OA4B4,则A4的坐标是,B4的坐标是 .(2)若按第(1)题找到的规律将三角形OAB进行n次变换,得到三角形OAnBn,推测An的坐标是 ,Bn的坐标是.三、解答题7.在下图中,每个正方形由边长为1的小正方形组成:2n=1n=2n=3n=4n=5n=6(1)观察图形,请填写下列表格:正方形边长1357…n(奇数)蓝色小正方形个数…正方形边长2468…n(偶数)蓝色小正方形个数…(2)在边长为n(n≥1)的正方形中,设蓝色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.8. 定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:一般地,任意三角形都是自相似图形,只要顺次连结三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn.⑴若△DEF的面积为10000,当n为何值时,2<Sn<3?(请用计算器进行探索,要求至少写出三次的尝试估算过程)⑵当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明).9. (2016•台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.310. 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为勾三、股四、弦五.⑴观察:3,4,5;5,12,13;7,24,25;……,发现这些
上传时间:2023-04-30 页数:11
416人已阅读
(5星级)
中考冲刺:观察、归纳型问题—知识讲解(基础)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着特殊——一般——特殊的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n=1,2,3…代入验证,都符合时即为正确结论.【典型例题】类型一、数式归纳1.试观察下列各式的规律,然后填空:2(1)(1)1xxx;23(1)(1)1xxxx;324(1)(1)1xxxxx;…;则109(1)(xxx…1)x________.【思路点拨】根据前几个等式的规律,不难得出1(1)(nnxxx…11)1nxx.【答案与解析】1答案:111x.【总结升华】此题归纳方法很多,注意每行数字的变化规律和符号规律.举一反三:【变式1】观察下列各式: (x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;… … …(1)根据规律填空 (x-1)(xn+xn-1+…+x+1)=__ __________.(2)根据规律计算 2100+299+298+297+…+22+2 +1= .【答案】(1) xn+1-1 ; (2) 2101-1.【变式2】按一定规律排列的一列数依次为: 14916,,,,,3579按此规律排列下去,这列数中的第5个数是 ,第n个数是 .【答案】225n;.112n+1类型二、图形变化归纳2.(招远市期末)如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2012次闪烁呈现出来的图形是()A.B.C.D.【思路点拨】从所给四个图形中可以得出每旋转一次的度数,根据阴影所处的位置的规律即可算出2012次之后的图形.【答案与解析】解:易得每旋转一次,旋转角为90°,即每4次旋转一周,∵2012÷4=503,即第2012次与第4次的图案相同.故选B.【总结升华】找到图形的变化规律是解题的关键.举一反三:【变式】如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()2A. B. C.D.【答案】A.3.(2015•海宁市模拟)操作:将一个边长为1的等边三角形(如图1)的每一边三等分,以居中那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(如图2),称为第一次分形.接着对每个等边三角形凸出的部分继续上述过程,即在每条边三等分后的中段向外画等边三角形,得到一个新的图形(如图3),称为第二次分形.不断重复这样的过程,就能得到雪花曲线.问题:(1)从图形的对称性观察,图4是 图形(轴对称或中心对称图形)(2)图2的周长为 ;(3)试猜想第n次分形后所得图形的周长为.【
上传时间:2023-04-30 页数:7
416人已阅读
(5星级)
中考冲刺:图表信息型问题—巩固练习(基础)【巩固练习】一、选择题1. (2016春•和平区期末)已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是( )A.y<﹣4 B.﹣4<y<0C.y<2D.y<02.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为() A.5 B.7 C.6 D.333. 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是 ()A.轮船的速度为20千米/小时B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时D.快艇不能赶上轮船二、填空题4.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.15.某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:估计该校九年级550学生中,三种传播途径都知道的大概有________人.6.(2015•藤县一模)如图①,在矩形ABCD中,动点P从点C出发,沿C→D→A→B的方向运动至点B处停止.设点P运动的路程为x,△BCP的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点P应运动到点处.三、解答题7. (2016秋•灵石县期中)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港1420B港108(1)设从甲仓库运送到A港口的物资为x吨,用含x的式子填写下表:港口运费(元/吨)甲库乙库A港x B港 (2)求总费用y(元)与x(箱)之间的函数关系式,并写出x的取值范围;2(3)求出最低费用,并说明费用最低时的调配方案.8.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).图(1)、图(2)是2000年该市各民族人口统计图.请你根据图(1)、图(2)提供的信息回答下列问题:(1)2000年贵阳市少数民族总人口数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2002年贵阳市参加中考的少数民族学生人数?9.某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度哪一个月的产量最高? ________月.(2)该厂一月份产量占第一季度总产量的________%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格产品?(写出解答过程)10.某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每小时的运输量最多,乙车每小时的运输量最少,乙车每小时运6吨,下图是甲、乙、丙三辆运输车开始工作后,仓库的库存量y(吨)与工作时间x(小时)之间的函数图象,其中OA段只有甲、丙两车参与运输,AB段只有乙、丙两车参与运输,BC段只有甲、乙两车参与运输.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而3£¨Í¼1£©85%15%ÉÙÊýÃñ×庺×å £¨Í¼2£©ÉÙÊýÃñ×åÆäËû²¼ÒÀ×å¶±×åÃç×å°Ù·Ö±È£¨%£©51015202530354045500退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨? 【答案与解析】一、选择题1.【答案】D;【解析】将(2,0)、(0,﹣4)代入y=kx+b中,得:,解得:,∴一次函数解析式为y=2x﹣4.∵k=2>0,∴该函数y值随x值增加而增加,∴y<2×2﹣4=0.2.【答案】B;【解析】由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的
上传时间:2023-04-30 页数:6
416人已阅读
(5星级)
中考冲刺:阅读理解型问题—知识讲解(基础)【中考展望】 阅读理解型问题在近几年的全国中考试题中频频亮相,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.【方法点拨】题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.阅读理解题一般可分为如下几种类型:(1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.【典型例题】类型一、阅读试题提供新定义、新定理,解决新问题1.阅读材料:例:说明代数式221(3)4xx的几何意义,并求它的最小值.解:221(3)4xx=222(0)1(3)2xx,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则2(0)1x可以看成点P与点A(0,1)的距离,22(3)2x可以看成点P与点B(3,2)的距1离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角△A′CB,因为A′C=3,CB=3,所以A′B=32,即原式的最小值为32.根据以上阅读材料,解答下列问题:(1)代数式22(1)1(2)9xx的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标)(2)代数式22491237xxx的最小值为 .【思路点拨】(1)先把原式化为222(1)1(2)3xx的形式,再根据题中所给的例子即可得出结论;(2)先把原式化为222(0)7(6)1xx的形式,故得出所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,然后在坐标系内描出各点,利用勾股定理得出结论即可.【答案与解析】解:(1)∵原式化为222(1)1(2)3xx的形式,∴代数式222(1)1(2)3xx的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(2,3)的距离之和,故答案为(2,3);(2)∵原式化为222(0)7(6)1xx的形式,∴所求代数式的值可以看成平面直角坐标系中点P(x,0)与点A(0,7)、点B(6,1)的距离之和,如图所示:设点A关于x轴的对称点为A′,则PA=PA′,∴PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,∴PA′+PB的最小值为线段A′B的长度,∵A(0,7),B(6,1)∴A′(0,-7),A′C=6,BC=8,∴A′B=222268ACBC=10,故答案为:10.2【总结升华】本题考查的是轴对称——最短路线问题,解答此题的关键是根据题中所给给的材料画出图形,再利用数形结合求解.类型二、阅读试题信息,归纳总结提炼数学思想方法2.阅读材料:(1)对于任意两个数a、b的大小比较,有下面的方法: 当a-b>0时,一定有a>b; 当a-b=0时,一定有a=b; 当a-b<0时,一定有a<b.反过
上传时间:2023-04-30 页数:14
416人已阅读
(5星级)
一元二次方程的解法(三)--公式法,因式分解法—知识讲解(提高)【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根; ②当时,原方程有两个相等的实数根; ③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x的一元二次方程的步骤: ①把一元二次方程化为一般形式; ②确定a、b、c的值(要注意符号); ③求出的值; ④若,则利用公式求出原方程的解; 若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)axbxca,用配方法将其变形为:2224()24bbacxaa1①当240bac时,右端是正数.因此,方程有两个不相等的实根:21,242bbacxa② 当240bac时,右端是零.因此,方程有两个相等的实根:1,22bxa③ 当240bac时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法 提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释: (1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x的方程2()(42)50mnxmnxnm.【答案与解析】(1)当m+n=0且m≠0,n≠0时,原方程可化为(42)50mmxmm.∵m≠0,解得x=1.(2)当m+n≠0时,∵amn,42bmn,5cnm,∴2224(42)4()(5)360bacmnmnnmm,∴2243624|6|2()2()nmmnmmxmnmn,∴11x,25nmxmn.【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.2举一反三:【变式】解关于x的方程2223(1)xmxmxxm;【答案】原方程可化为2(1)(3)20,mxmx∵1,3,2,ambmc∴2224(3)8(1)(1)0bacmmm≥,∴23(1)3(1),2(1)2(1)mmmmxmm∴ 122,1.1xxm2.用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m; 【答案与解析】方程整理为224214540mmmmm,∴22130mm,∴a=1,b=-2,c=-13,∴224(2)41(13)56bac,∴24(2)56221bbacma22141142,∴1114m,2114m.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【变式】用公式法解下列方程: 【答案】∵21,3,2,abmcm ∴22224(3)4120bacmmm≥ ∴23322mmmmx ∴122,.xmxm3类型二、因式分解法解一元二次方程3.(2016•荆门)已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A.7B.10C.11D.10或11【思路点拨】把x=3代入已知方程求得m的值;然后通过因式分解法解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即
上传时间:2023-04-30 页数:5
416人已阅读
(5星级)
【巩固练习】一.选择题1.(2016•百色)分解因式:16x﹣2=()A.(4x﹣)(4+x)B.(x4﹣)(x+4)C.(8+x)(8x﹣)D.(4x﹣)22. (2015春•东平县校级期末)下列多项式相乘,不能用平方差公式的是() A.(﹣2y﹣x)(x+2y)B.(x﹣2y)(﹣x﹣2y)C.(x﹣2y)(2y+x)D.(2y﹣x)(﹣x﹣2y)3. 下列因式分解正确的是().A.2292323abababB.5422228199aabaababC.2112121222aaa D.22436223xyxyxyxy4. 下列各式,其中因式分解正确的是() ①22933422xyxyxy;②2933xxx ③2212121mnmnmn④2294252abacabcabcA.1个B.2个C.3个D.4个5. 若4821能被60或70之间的两个整数所整除,这两个数应当是( )A.61,63B.61,65C.63,65D.63,676. 乘积22221111111123910应等于( )A.512B.12C.1120D.23二.填空题7. 11_________mmaa;2211xxx. 8. 若2|4|50mn,将22mxny分解因式为__________.9. 分解因式:2121()()=mmpqqp_________.10. 若216422nxxxx,则n是_________.11. (2015春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是.12.(2016•烟台)已知|xy﹣+2|+=0,则x2y﹣2的值为.三.解答题13. 用简便方法计算下列各式:1(1) 21999-1998×2000(2)2253566465(3) 2222222210099989796952114.(2014秋•蓟县期末)已知(2a+2b+3)(2a+2b﹣3)=72,求a+b的值.15.设22131a,22253a,……,222121nann(n为大于0的自然数) (1)探究na是否为8的倍数,并用文字语言表述你所获得的结论; (2)若一个数的算术平方根是一个自然数,则称这个数是完全平方数.试找出1a,2a,……,na这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,na为完全平方数.【答案与解析】一.选择题1. 【答案】A;【解析】16x﹣2=(4x﹣)(4+x).2. 【答案】A; 【解析】解:A、两项都是互为相反数,不符合平方差公式.B、C、D中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A.3. 【答案】C; 【解析】22933abbaba;542222228199933aabaababaababab;224362232223xyxyxyxyxyxyxy.4. 【答案】C; 【解析】①②③正确. 229433223322abacabacabac53232abcabc.5. 【答案】C;【解析】482424241212212121212121241266241221212121212165636. 【答案】C;2【解析】22221111111123910 111111111111111122339910103142531081192233449910101111121020二.填
上传时间:2023-04-30 页数:4
416人已阅读
(5星级)
一元一次不等式的解法(基础)巩固练习【巩固练习】一、选择题1.下列各式中,是一元一次不等式的是()A.5+4>8B.2x-1C.2x≤5D.-3x≥0 2.已知a>b,则下列不等式正确的是A.-3a>-3bB.C.3-a>3-bD.a-3>b-33.由x>y得ax<ay的条件应是A.a>0B.a<0C.a≥0 D.b≤04.(2015•西宁)不等式3x≤2(x﹣1)的解集为()A.x≤﹣1B.x≥﹣1C.x≤﹣2D.x≥﹣25.(山东烟台)不等式的非负整数解有()A. 1个B.2个 C.3个 D.4个 6.(江西南昌)不等式的解集在数轴上表示正确的是()二、填空题7.用>或<填空,并说明是根据不等式的哪条基本性质: (1)如果x+2>5,那么x_______3;根据是_______. (2)如果,那么a_______;根据是________. (3)如果,那么x________;根据是________.(4)如果x-3<-1,那么x_______2;根据是________.8. (2015•包河区二模)不等式>x﹣1的解集是 .9. 代数式的值不小于代数式的值,则的取值范围是 .10.不等式的非负整数解为.11.满足不等式的最小整数是 .12.若m>5,试用m表示出不等式(5-m)x>1-m的解集______.三、解答题13.(2014春•东昌府区期中)(1)解不等式3(2y﹣1)>1﹣2(y+3);(2)解不等式≥+1,并把它的解集在数轴上表示出来.14.a取什么值时,代数式3-2a的值: (1)大于1? (2)等于1? (3)小于1?115.y取什么值时,代数式2y-3的值:(1)大于5y-3的值?(2)不大于5y-3的值?16.求不等式64-11x>4的正整数解. 【答案与解析】一、选择题1. 【答案】C;【解析】考查一元一次不等式的概念;2. 【答案】D;【解析】考查一元一次不等式的性质;3. 【答案】B;【解析】考查一元一次不等式的性质;4. 【答案】C; 【解析】去括号得,3x≤2x﹣2,移项、合并同类项得,x≤﹣2,故选:C.5. 【答案】C;【解析】先求得解集为,所以非负整数解为:0,1,2;6. 【答案】B;【解析】解原不等式得解集:.二、填空题7. 【答案】(1)>,不等式基本性质1;(2)>,不等式基本性质3; (3)<,不等式基本性质2;(4)<,不等式基本性质1;8.【答案】 x<4 ;【解析】去分母得1+2x>3x3﹣,移项得2x3x﹣>﹣31﹣,合并得﹣x>﹣4,系数化为1得x<4. 9.【答案】;【解析】由题意得,解得10.【答案】0,1,2;【解析】解不等式得11.【答案】5;【解析】不等式的解集为,所以满足不等式的最小整数是5.12.【答案】. 【解析】∵,∴,所以(5-m)x>1-m,可得:三、解答题13.【解析】解:(1)去括号,得:6y﹣3>1﹣2y﹣6,移项,得:6y+2y>1﹣6+3,2合并同类项,得:8y>﹣2,系数化成1得:y>﹣;(2)去分母,得:﹣2(2x﹣1)≥﹣3(2x+1)+6,去括号,得:﹣4x+2≥﹣6x﹣3+6,移项,得:﹣4x+6x≥﹣3+6﹣2,合并同类项,得:2x≥1,系数化为1得:x≥.14.【解析】解:(1)由3-2a>1,得a<1;(2)由3-2a=1,得a =1;(3)由3-2a<1,得a>1.15.【解析】解:(1)由2y-3>5y-3,得y<0;(2)由2y-3≤5y-3,得y≥0. 16.【解析】 解:先解不等式的解集为x<,所以正整数解为1,2,3,4,5.3
上传时间:2023-04-30 页数:3
416人已阅读
(5星级)
【巩固练习】一、选择题1.已知A、B两地相距10km,在地图上相距10cm,则这张地图的比例尺是().A.100000:1B.1000:1C.1:100000D.1:10002.(2015春•天津期末)能确定某学生在教室中的具体位置的是()A.第3排B.第2排以后C.第2列D.第3排第2列3.如图,△COB是由△AOB经过某种变换后得到的图形,请同学们观察A与C两点的坐标之间的关系,若△AOB内任意一点P的坐标是(a,b),则它的对应点Q的坐标是().A.(a,b)B.(-a,b)C.(-a,-b)D.(a,-b)4.若把P(3,-1)沿y轴正方向平移2个单位长度,再沿x轴负方向平移6个单位长度得到P′,则P′的坐标为( ).A.(-3,2)B.(9,1)C.(-3,1)D.(3,-1)5.在平面直角坐标系中,将某个图象上各点的横坐标都加上3,得到一个新图形,那么新图形与原图形相比().A.向右平移3个单位B.向左平移3个单位C.向上平移3个单位D.向下平移3个单位6. (2016•贵港一模)若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2) B.(1,﹣2) C.(﹣2,0)D.(4,6)二、填空题7.(2016春•濮阳县校级期中)同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜如图是两人玩的一盘棋,若白的位置是(1,﹣5),黑的位置是(2,﹣4),现轮到黑棋走,你认为黑棋放在位置就获得胜利了.8.如果仅知道建筑物A在建筑物B的北偏东30°,且相距50km处,能根据A的位置确定B的位置吗? (填能或不能)9.小明从家里出发向正北方向走200m就到了学校,如果以小明家为原点,正东、正北方向分别为x轴、y轴的正方向,那么学校的位置可表示为_______;如果以学校为原点,1那么小明家的位置可表示为__________.10. 通过平移把点A(1,-3)移到点A1(3,0),按同样的平移方式把点P(2,3)移到点P1,则点P1的坐标是______.11.将点P1(x,y)向右平移3个单位,得到点P2的坐标为______;将点P2再向上平移2个单位,得到点P3的坐标为________.12.某人乘坐电梯,刚进入电梯时,他的头部的坐标是(1,2),脚的坐标为(0,3),过了几秒钟后,他的头部坐标是(5,6),这时脚的坐标是________.三、解答题13.(2015春•北流市期中)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)14.如图,一条船从点O向北偏东37°方向航行2小时,走了50海里到达点A(30,40),然后以同样的速度向正东方向行进3小时,则船在什么位置?15.如图,在平面直角坐标系中,任意一点M(a,b)经过平移后对应点为M′(a-3,b+4),若将图中的△ABC做同样的平移,得到△A′B′C′,求A′、B′、C′的坐标.【答案与解析】一、选择题1. 【答案】C; 【解析】比例尺=图上距离:实际距离,代入数据得比例尺为10:10 000 00=1:100000.2. 【答案】D.3. 【答案】D; 【解析】观察图形可得,△COB与△AOB关于x轴对称,则 P (a,b)关于x轴对称点坐标2为(a,-b).4. 【答案】C; 【解析】沿y轴正方向平移2个单位长度则纵坐标增加2,再沿x轴负方向平移6个则横坐标减小6.5. 【答案】A. 6. 【答案】A; 【解析】点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,于是B(﹣3,﹣1)的对应点D的横坐标为﹣3+3=0,点D的纵坐标为﹣11=2﹣﹣,故D(0,﹣2).二、填空题7. 【答案】(2,0)或(7,﹣5);8. 【答案】能;【解析】B的位置在A的位置的南偏西30°,且与A距离50km处.9. 【答案】 (0,200),(0,-200); 【解析】根据题意,建立适当坐标系,从而确定要求点的位置.10.【答案】(4,6); 【解析】从点A到A1点的横坐标从1到3,说明是向右移动了3-1=2,纵坐标从-3到0,说明是向上移动了0-(-3)=3,那点
上传时间:2023-04-30 页数:4
416人已阅读
(5星级)
中考冲刺:观察、归纳型问题—巩固练习(基础)【巩固练习】一、选择题1. 用边长为1的正方形覆盖3×3的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是() A.2 B.4 C.5 D.62.求1+2+22+23+…+22 012的值,可令S=1+2+22+23+…+22 012,则2S=2+22+23+24+…+22013,因此,2S-S=22 013-1.仿照以上推理,计算出1+5+52+53+…+52 012的值为()A.52 012-1 B.52 013-1 C.D. 3.(2016•冷水江市三模)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1)D.(2018,0)二、填空题4.(2015•盘锦四模)已知,如图,△OBC中是直角三角形,OB与x轴正半轴重合,∠OBC=90°,且OB=1,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC1,得到△OB2C2,…,如此继续下去,得到△OB2015C2015,则点C2015的坐标是.15.(2016•天门)如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为 .6. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=___________.(用含n的式子表示)三、解答题7.观察下列等式:……请解答下列问题:(1)按以上规律列出第5个等式:a5=______=______;(2)用含有n的代数式表示第n个等式:an=______=______(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.28. 如下表所示,是按一定规律排列的方程组和它的解的对应关系,若方程组自左至右依次记作方程组1、方程组2、方程组3、…、方程组n.(1)将方程组1的解填入表中.(2)请依据方程组和它的解的变化规律,将方程组n和它的解直接填入表中;9. 如图所示,是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图①倒置后与原图拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为123…(1)2nnn.如果图①中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边的这个圆圈中的数是________;(2)我们自上往下,在每个圆圈中都按图④的方式填上一串连续的整数-23,-22,-21,…,求图④中所有圆圈中各数的绝对值之和.10.(余杭区期中)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去.(1)填表次数12345个数47(2)如果剪了n次,共剪出多少个小正方形?(3)能否经过若干次分割后共得到2014片纸片?若能,请直接写出相应的次数,若不能,请说明理由.3(4)若将所给的正方形纸片剪成若干个小正方形(其大小可以不一样),那么你认为可以将它剪成六个小正方形吗?八个小正方形呢?如果可以,请在下图中画出剪割线的示意图;如果不可以,请简单说明理由.【答案与解析】一、选择题1.【答案】D;【解析】6个,把边长为1的小正方形的对角线与3乘3网格中的中间正方形任意边重合(其中小正方形的对角线中点与3乘3网格中的中间正方形边上的中点重合),因为对角线的长为2>1,所以这时有6个正方形网格被覆盖. 2.【答案】C;【解析】设S=1+5+52+53+…+52 012,则5S=5+52+53+54+…+52 013.因此,5S-S=52 013-1,S=.3.【答案】B;【解析】以时间为点P的下标.观察,发现规律:
上传时间:2023-04-30 页数:6
415人已阅读
(5星级)
中考冲刺:几何综合问题—知识讲解(提高)【中考展望】 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.(2016•太原校级自主招生)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【思路点拨】(1)结论:FG=CE,FG∥CE.如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.1(2)结论仍然成立.如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.(3)结论仍然成立.如图3中,设DE与FC的延长线交于点M,证明方法类似.【答案与解析】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.2∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【总结升华】本题考查四边形综合题、正方形的性质、平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是
上传时间:2023-04-30 页数:16
414人已阅读
(5星级)
图形的旋转--巩固练习【巩固练习】一. 选择题1.(2015•洛阳模拟)如图四个圆形网案中,分别以它们所在网的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D. 2.下列图形绕某点旋转180°后,不能与原来图形重合的是( )3. 有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个B.2个C.3个D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是().A.点AB.点BC.点CD.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是( ).A.DE平分∠ADBB.AD=DCC.AE∥BDD.AE=BC6. 如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( ) 1A.10° B.15° C.20° D.25°二. 填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____. 8. 针表的分针匀速旋转一周需要60分钟,则经过15分钟,分针旋转了__________.9.正三角形绕其中心至少旋转__________,可与其自身重合.10. 一个平行四边形ABCD绕其对角线的交点旋转,至少要旋转________,才可与其自身重合.11.(2015•吉林)如图,在RtABC△中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.12. 如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为_____,∠APB=_______.三. 综合题13.(2015•湖北)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.214. 如图,E是正方形ABCD的边BC上一点,F是DC的延长线上一点,且∠BAE=∠FAE.求证:BE+DF=AF. 15.如图,是边长为的正方形的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心放在点处,并将纸板绕点旋转,其半径分别交、于点,求证:正方形的边被纸板覆盖部分的总长度为定值321BMCDNOA【答案与解析】一、选择题1.【答案】D;【解析】A图形顺时针旋转120°后,能与原图形完全重合,A不正确;B图形顺时针旋转90°后,能与原图形完全重合,B不正确;C图形顺时针旋转180°后,能与原图形完全重合,C不正确;D图形顺时针旋转72°后,能与原图形完全重合,D正确,故选:D.2.【答案】B3.【答案】D4.【答案】B【解析】连接对应点,做三条线段的垂直平分线,交点即是旋转中心。5.【答案】C【解析】因为旋转,△ADE≌△CDB,即可证得A,B,D成立.6.【答案】B【解析】因为△BCE旋转90°得到△DCF,所以EC=CF,∠CFD=∠CEB=60°,即∠EFC=45°,所以∠EFD=60°45°=15°二、填空题7.【答案】A;60°.8.【答案】90°3【解析】°9.【答案】120°10.【答案】180°【解析】平行四边形的对角线互相平分.11.【答案】42;【解析】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABCBDE≌△,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在RtACB△中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.12.【答案】6;150°【解析】△PAC绕点A逆时针旋转后得到所以,,
上传时间:2023-04-30 页数:5
414人已阅读
(5星级)
【巩固练习】一.选择题1. (2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.2.(2015•威海模拟)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周长为() A.13B.12C.15D.203. 以下叙述中不正确的是( )A.等边三角形的每条高线都是角平分线和中线B.其中有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,在一个三角形中,如果两个角不相等,那么它们所对的边也不相等4.下列条件①有一个角为60°的三角形;②三个外角都相等的三角形;③一边上的高与中线重合的三角形;④有一个角为60°的等腰三角形.能判定三角形为等边三角形的有( )A.1个B.2个C.3个D.4个5. 如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E, 且AB=BC,则下列结论中错误的是( ) A.BD⊥ACB.∠A=∠EDAC.BC=2AD D.BE=ED6. 如图,△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形17.下列说法中不正确的是()A.等边三角形是轴对称图形B.若两个图形的对应点连线都被同一条直线垂直平分,则这两个图形关于这条直线对称 C.若△≌△111CBA ,则这两个三角形一定关于一条直线对称D.直线MN是线段AB的垂直平分线,若P点使PA=PB,则点P在MN上,若11PAPB,则1P不在MN上8.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.CD=DE D.AC=BD二.填空题9. 如图,O是 △ABC内一点,且 OA=OB=OC,若∠OBA=20°,∠OCB=30°,则∠OAC=_________.10. 如图,△ABC中,∠A=90°,BD为∠ABC平分线,DE⊥BC,E是BC的中点,∠C的度数为_________.11. 如图,△ABC中,∠C=90°,D是CB上一点,且DA=DB=4,∠B=15°,则AC的长为.212.(2014•宝应县二模)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=60cm,DE=2cm,则BC=cm.13. 点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80º,则∠CEG= .14.一个汽车车牌在水中的倒影为,则该车的牌照号码是______.15.(2016·厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为_________.16. 三角形纸片ABC中,∠A=60°,∠B=80°,将纸片的一角折叠,使点C落在△ABC内,如图所示∠1=30°,则∠2=_______.三.解答题17.(2015春•宜春期末)已知,在平面直角坐标系中,点M、N的坐标分别为(1,4)和(3,0),点Q是y轴上的一个动点,且M、N、Q三点不在同一直线上,当△MNQ的周长最小时,求点Q的坐标.318. 如图,上午9时,一条渔船从A出发,以12海里/时的速度向正北航行,11时到达B处,从A、B处望小岛C,测得∠NAC=15°,∠NBC=30°.若小岛周围12.3海里内有暗礁,问该渔船继续向正北航行有无触礁危险?19.如图所示,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AE,AC=AD,求证∠DBC=12∠DAB. 20.如图所示,在△ABC中,∠B=90°,AB=BC,BD=CE,M是AC边的中点,求证△DEM是等腰三角形.CEBADM【答案与解析】一.选择题41. 【答案】D;【解析】A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.2. 【答案】B;【解析】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD
上传时间:2023-04-30 页数:8
414人已阅读
(5星级)
统计调查知识讲解【学习目标】1.了解全面调查和抽样调查的优缺点,能选择合适的调查方式,解决有关问题;2.了解总体、样本、样本容量等相关概念;3. 会用扇形统计图、条形统计图和折线统计图表示数据,并能从统计图或表中获取信息.【要点梳理】要点一、统计调查1.统计相关概念总体:调查时,调查对象的全体叫做总体.个体:组成总体的每一个调查对象叫做个体.样本:从总体中取出的一部分个体叫做总体的一个样本.样本容量:样本中个体的数量叫做样本容量(不带单位).要点诠释:(1)调查对象的全体一般是指调查对象的某种数量指标的全体,如对于一个班级,如果考察的是这个班学生的身高,那么总体是指这个班学生身高的全体,不能错误地理解为学生的全体是总体. (2)样本是总体的一部分,一个总体中可以有许多样本,样本在一定程度上能够反映总体,为了使样本能较好地反映总体情况,在选取样本时要注意使其具有一定的代表性.(3) 样本容量是一个数字,不能有单位.一般地,样本容量越大,通过样本对总体的估计越精确,在实际研究中,要根据具体情况确定样本容量的大小.例如:从5万名考生的数学成绩中抽取2000名考生的数学成绩进行分析,样本是2000名考生的数学成绩,而样本容量是2000,不能将其误解为2000名考生或2000名.2. 调查的方法:全面调查和抽样调查(1)全面调查:考察全体对象的调查叫做全面调查.要点诠释: (1)全面调查又叫普查,它是指在统计的过程中,为了某种特定的目的而对所有考察的对象一一作出的调查,在记录数据时,通常用划记法进行记录数据. (2)一般来说,全面调查能够得到全体被调查对象的全面、准确的信息,但有时总体中的个体的数目非常大,全面调查的工作量太大;有时受条件的限制,无法进行全面调查;有时调查具有破坏性(例如:测试一批灯泡的使用寿命或炮弹的杀伤半径等),不能进行全面调查.(2)抽样调查:从调查对象中抽取部分对象进行调查,然后根据调查的数据推断全体对象的情况,这种调查方式称为抽样调查.要点诠释:(1)从总体中抽取部分个体进行调查的方式,我们称抽样调查,在抽取的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方式是一种简单随机抽样.(2)抽样调查方便、快捷,能够减少调查统计的工作量但调查的结果不如全面调查得到的结果准确.(3)调查方法的选择: ①全面调查是对考查对象的全体调查,它要求对考查范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则只是对总体中的部分个体进行调查,以样本来估计总体的情况.②在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考1虑实现的可能性和所付出代价的大小.要点二、数据的描述描述数据的方法有两种:统计表和统计图.统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据统计图:利用条形图、扇形图、折线图描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.要点诠释:(1)条形统计图:用线段长度表示数据,根据数据的多少画成长短不同的长方形直条,然后按顺序把这些直条排列起来,条形统计图很容易看出数据的大小,便于比较,但不能清楚地反映各部分占总体的百分比.(2)扇形统计图:用整个圆表示总体,用圆内各个扇形的大小表示各部分数量,从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.【典型例题】类型一、统计学及其相关概念1.某次考试有3000名学生参加,为了了解3000名学生的数学成绩,从中抽取了1000名学生的数学成绩进行调查统计分析,在这个问题中,有下述3种说法:①1000名考生是总体的一个样本;②3000名考生是总体;③1000名考生数学平均成绩可估计总体数学平均成绩;④每个考生的数学成绩是个体.其中正确的说法有().A.0种B.1种C.2种D.3种【思路点拨】总体是3000名学生的数学成绩,个体是这次考试中每名学生的数学成绩,样本是抽取的1000名学生的数学成绩,样本容量是1000.【答案】C.【解析】 解:①、②两个说法指的是考生而不是考生的成绩,故①、②两个说法不对,④指的是考生的成绩,故④对.③用样本的特征估计总体的特征,是抽样调查的核心,故③对.【总结升华】总体、样本的考察对象是相同的,所不同的是范围的大小,在本题中,总体、样本都是指考生的成绩,而不是考生.举一反三:【变式】为了了解某市2万名学生参加中考的情况,教育部门从中抽取了60
上传时间:2023-04-30 页数:7
414人已阅读
(5星级)
科学记数法与近似数知识讲解【学习目标】1.理解科学记数法的意义,并会用科学记数法表示一个较大的数;2.了解近似数的概念,能按精确度的要求取近似数,能根据近似数的不同形式确定其精确度;3.体会近似数在生活中的实际应用. 【要点梳理】要点一、科学记数法把一个大于10的数表示成10na的形式(其中a是整数数位只有一位的数,l≤|a|<10,n是正整数),这种记数法叫做科学记数法,如42000000=74.210.要点诠释:(1)负数也可以用科学记数法表示,照写,其它与正数一样,如-3000=3310;(2)把一个数写成10na形式时,若这个数是大于10的数,则n比这个数的整数位数少1.要点二、近似数及精确度1. 近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.2. 精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度一般用精确到哪一位的形式的来表示,一般来说精确到哪一位表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米.【典型例题】类型一、科学记数法1.(2016•山西)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【思路点拨】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【答案】B.【解析】解:5500万=5.5×107.故选:B.1【总结升华】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.举一反三:【变式】(2015•酒泉)中国航空母舰辽宁号的满载排水量为67500吨.将数67500用科学记数法表示为() A.0.675×105B.6.75×104C.67.5×103D.675×102【答案】B.2. 把下列用科学记数法表示的数转化成原数.(1)33.1410;(2)71.73210;(3)61.39210千米【答案与解析】此题是对科学记数法的逆用解:(1)33.14103140;(2)71.7321017320000;(3)61.39210千米=1392000千米【总结升华】将科学记数法表示的数转化为原数,方法简单:n是几就将10na中a的小数点向右移动几位.类型二、近似数及精确度 3.(2015•深圳模拟)由四舍五入法得到的近似数6.8×103,下列说法中正确的是() A.精确到十分位,有2个有效数字 B.精确到个位,有2个有效数字 C.精确到百位,有2个有效数字 D.精确到千位,有4个有效数字【思路点拨】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n的有效数字只与前面的a有关,与10的多少次方无关.【答案】C.【解析】解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.【总结升华】本题考查了近似数与有效数字,较大的数用a×10n表示,看精确到哪一位,需看个位代表什么;有效数字需看乘号前面的有效数字.举一反三:【变式】用四舍五入法,按括号中的要求把下列各数取近似数(1)27.15万(精确到千位);(2)12 341 000(精确到万位). 2【答案】解:(1)27.15万=27150052720002.7210或表示为27.2万;(2)12 341 00012340000=71.23410.4.下列由四舍五入得到的近似数,它们精确到哪一位.(1)1.20 (2)1.49亿; (3)50.3010【答案与解析】解:(1) 1.20精确到百分位;(2)1.49亿精确到百万位;(3)50.3010精确到千位.【总结升华】一般的近似数,四舍五入到哪一位就说它精确到哪一位,例:1.20精确到百分位,则百分位就是精确度;若是汉字单位万、千、百类近似数,精确度是由其最后一位数所在的数位确定的,但必须先把该数写成单位为个位的数再确定其精确度;用形如10na的数,其精确度看a中最后一位数在原数中
上传时间:2023-04-30 页数:3
414人已阅读
(5星级)
整式的概念【学习目标】1.掌握单项式系数及次数的概念; 2. 理解多项式的次数及多项式的项、常数项及次数的概念;3.掌握整式的概念,会判断一个代数式是否为整式;4. 能准确而熟练地列式子表示一些数量关系.【要点梳理】要点一、单项式 1.单项式的概念:如22xy,13mn,-1,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2st可以写成12st。但若分母中含有字母,如5m就不是单项式,因为它无法写成数字与字母的乘积.2.单项式的系数:单项式中的数字因数叫做这个单项式的系数. 要点诠释:(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,1通常省略不写;(4)单项式的系数是带分数时,通常写成假分数,如:2114xy写成254xy.3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.要点诠释:单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.要点二、多项式1.多项式的概念:几个单项式的和叫做多项式. 要点诠释:几个是指两个或两个以上.2. 多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项. 要点诠释:(1)多项式的每一项包括它前面的符号. (2)一个多项式含有几项,就叫几项式,如:2627xx是一个三项式.3. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.要点诠释:(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.要点三、 整式单项式与多项式统称为整式.要点诠释:(1)单项式、多项式、整式这三者之间的关系如图所示.1即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.【典型例题】类型一、整式概念辨析1.指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?22xy,x,3ab,10,61xy,1x,217mn,225xx,22xx,7a【答案与解析】单项式有:x,10,217mn,7a;多项式有:22xy,3ab,61xy,225xx;整式有:22xy,x,3ab,10,61xy,217mn,225xx,7a.【总结升华】22xx不是整式,因为分母中含有字母; 212aa也不是多项式,因为1a不是单项式.举一反三:【变式】下列代数式:322332111;;;;2;-232axyabxxyxyyx①②③④⑤⑥,其中是单项式的是_______________,是多项式的是_______________.【答案】①②③,④⑥类型二、单项式2.指出下列代数式中的单项式,并写出各单项式的系数和次数.234ab,a,442x,amn,223ay,a-3,5-3,82-310tm,2xy【答案与解析】234ab,a,442x,223ay,5-3,82-310tm,2xy是单项式,其中 234ab的系数是34,次数是3;a的系数是-1,次数是1;442x的系数是42,次数是4;223ay的系数是3,次数是4;53为非零常数,只有数字因式,系数是它本身,次数为0;82-310tm的系数仍按科学记数法表示为-3×108,次数是3;22xy只含有字母因数,系数是l,次数为字母指数之和为3.【总结升华】(1)要区分数字因数、字母因数;(2)不能见了指数就相加,如442x中,42的指数4不能相加,次数为4;(3)有分数线的,分子、分母的数字都是系数;(4)是常数,不能看作字母.举一反三:【变式1】单项式3x2y3的系数是.【答案】3.【变式2】下列结论正确的是().A.没有加减运算的代数式叫做单项式.B.单项式237xy的系数是3,次数是2.C.单项式m既没有系数,也没有次数.D.单项式2xyz的系数是-1,次数是4.【答案】D类型三、多项式3.(2016春•龙泉驿区期中)多项式3x2+πxy2+9中,次数最高的项的系数是.【思路点拨】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,找出次数最高的项的次数即可.【答案】π.【解析】解:多项式3x2+πxy2+
上传时间:2023-04-30 页数:5
414人已阅读
(5星级)
2021年柳州市初中学业水平考试与高中阶段学校招生考试数学(考试时间:120分钟满分:120分)Ⅰ第卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1. 在实数3,,0,中,最大的数为()A. 3B. C. 0D. 【答案】A【解析】【分析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可.【详解】根据有理数的比较大小方法,可得: ,因此最大的数是:3,故选:A.【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数.2. 如下摆放的几何体中,主视图为圆的是()A. B. C. D. 【答案】D【解析】【分析】逐项分析,根据三视图的定义,找出主视图为圆的选项.【详解】A. 主视图为三角形,不符合题意;B. 主视图为矩形,不符合题意;C. 主视图为正方形,不符合题意;D. 主视图为圆,符合题意.故选D.【点睛】本题考查了三视图的知识点,熟知主视图的定义和画三视图的规则是解题的关键.3. 柳州市大力发展新能源汽车业,仅今年二月宏光MINIEV销量就达17000辆,用科学记数法将数据17000表示为()A. B. C. D. 【答案】C【解析】【分析】用科学计数法表示出即可.【详解】.故选C.【点睛】本题考查了科学计数法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原来的数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.4. 以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()A. B. C. D. 【答案】D【解析】【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D是轴对称图形,符合题意,故选D.【点睛】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.5. 以下调查中,最适合用来全面调查的是()A. 调查柳江流域水质情况B. 了解全国中学生的心理健康状况C. 了解全班学生的身高情况D. 调查春节联欢晚会收视率【答案】C【解析】【分析】逐项分析,找出适合全面调查的选项即可.【详解】A.调查柳江流域水质情况,普查不切实际,适用采用抽样调查,不符合题意;B.了解全国中学生的心理健康状况,调查范围广,适合抽样调查,不符合题意;C.了解全班学生的身高情况,适合普查,符合题意;D.调查春节联欢晚会收视率,调查范围广,适合抽样调查,不符合题意.故选C.【点睛】本题考查的是全面调查与抽样调查;在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.6. 如图,在菱形中,对角线,则的面积为()A. 9B. 10C. 11D. 12【答案】B【解析】【分析】菱形的对角线互相垂直平分,故的面积为对角线的一半的乘积的.【详解】是菱形的面积故选B.【点睛】本题考查了菱形的性质及三角形面积,理解是直角三角形是解题的关键.7. 如图,有4张形状大小质地均相同的卡片,正面印有速度滑冰、冰球、单板滑雪、冰壶四种不同的图案,背面完全相同,现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面怡好是冰壶项目图案的概率是()A. B. C. D. 【答案】A【解析】【分析】事件所有可能的结果有4种,抽出的卡片正面恰好是冰壶项目图案的结果有1种,据此利用概率公式求解即可.【详解】事件所有可能的结果有4种,抽出的卡片正面恰好是冰壶项目图案的结果有1种,所以抽出的卡片正面怡好是冰壶项目图案的概率是.故选:A.【点睛】本题考查了等可能事件的概率,根据概率计算公式,必须知道所有可能的结果及事件发生的结果.8. 下列计算正确的是()A. B. C. D. 【答案】C【解析】【分析】根据二次根式的运算性质求解,逐项分析即可【详解】A. ,不是同类二次根式,不能合并,不符合题意;B. ,不是同类二次根式,不能合并,不符合题意;C. 符合题意;D., 不是同类二次根式,不能合并,不符合题意.故选C.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.9. 某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分为及方差如右表所示,那么这三名同学数学成绩最稳定的是()甲乙丙91919162454A. 甲B. 乙C. 丙D. 无法确定【答案】A【解析】【分析】先比较平均成绩,当平均成绩一致时,比较方差,方差小的波动小,成绩更稳定.【详解】甲、乙、丙的成绩的平均分都是91,故比较它们的方差
上传时间:2023-05-08 页数:27
413人已阅读
(5星级)
中考总复习:几何初步及三角形—知识讲解(基础)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性. 【知识网络】【考点梳理】考点一、直线、射线和线段1.直线1代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质: 过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类: 锐角-小于直角的角(0°<<90°); 直角-平角的一半或90°的角(=90°); 钝角-大于直角而小于平角的角(90°<<180°);(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于 360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那2么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线(1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号⊥来表示.要点诠释: ①过一点有且只有一条直线与已知直线垂直.②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.(2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示: ∠1和∠8、∠2和∠7、∠3和∠6、∠4和∠
上传时间:2023-04-30 页数:7
413人已阅读
(5星级)
一元二次方程的解法(三)--公式法,因式分解法—知识讲解(基础)【学习目标】1. 理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2. 正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3. 通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式 一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根; ②当时,原方程有两个相等的实数根; ③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x的一元二次方程的步骤: ①把一元二次方程化为一般形式; ②确定a、b、c的值(要注意符号); ③求出的值; ④若,则利用公式求出原方程的解; 若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)axbxca,用配方法将其变形为:2224()24bbacxaa.①当240bac时,右端是正数.因此,方程有两个不相等的实根:21,242bbacxa.1② 当240bac时,右端是零.因此,方程有两个相等的实根:1,22bxa.③ 当240bac时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法 提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释: (1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1) x2+3x+1=0;(2)2241xx; (3)2x2+3x-1=0.【答案与解析】 (1) a=1,b=3,c=1∴x==.∴x1=,x2=.(2)原方程化为一般形式,得22410xx.∵2a,4b,1c,∴224(4)42180bac.∴42221222x,即1212x,2212x. (3) ∵a=2,b=3,c=﹣1∴b2﹣4ac=17>02∴x=∴x1=,x2=.【总结升华】用公式法解一元二次方程的关键是对a、b、c的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a,b,c的值并计算24bac的值;(3)若24bac是非负数,用公式法求解.举一反三:【变式】用公式法解方程:(2014•武汉模拟)x23x2=0﹣﹣.【答案】解:∵a=1,b=3﹣,c=2﹣;∴b24ac=﹣(﹣3)24×1×﹣(﹣2)=9+8=17;∴x==,∴x1=,x2=.2.用公式法解下列方程:(1) (2014•武汉模拟)2x2+x=2; (2) (2014秋•开县期末)3x26x2=0﹣﹣ ; (3)(2015•黄陂区校级模拟)x23x7=0﹣﹣.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c的值,代入求值即可.【答案与解析】 解:(1)2x∵2+x2=0﹣,∴a=2,b=1,c=2﹣,∴x===,∴x1=,x2=.(2) a=3∵,b=6﹣,c=2﹣,∴b24ac=36+24=60﹣>0,∴x=,∴x1=,x2=(3)∵a=1,b=3﹣,b=7﹣.∴b24ac﹣=9+28=37.3x= = ,解得 x1=,x2=.【总结升华】首先把每个方程化成一般形式,确定出a、b、c的值,在240bac的前提下,代入求根公式可求出方程的根.举一反三:【变式】用公式法解下列方程: 2221xx;【答案】解:移项,得22210xx.∵ 2a,2b,1c,224242(1)120bac,∴ 21213222x,∴ 1132x,2132x.类型二、因式分解法解一元二次方程3.(2016•沈阳)一元二次方程x24x=12﹣的根是(
上传时间:2023-04-30 页数:5
413人已阅读
(5星级)
2021年广西来宾市中考数学试卷一、选择题(本大题共12小题,共36分)1. 下列各数是有理数的是()A. B. C. D. 【答案】D【解析】【分析】利用有理数和无理数的定义判断即可.【详解】解:四个选项的数中:,,是无理数, 0是有理数,故选项D符合题意.故选:D.【点睛】此题考查了实数,熟练掌握有理数与无理数的定义是解本题的关键.2. 如图是一个几何体的主视图,则该几何体是()A. B. C. D. 【答案】C【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依题意,由几何体的主视图即可判断该几何体的形状.【详解】解:由该几何体的主视图可知,该几何体是选项C中的图形.故选:C.【点睛】本题考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也考查了空间想象能力.3. 如图,小明从入口进入博物馆参观,参观后可从,,三个出口走出,他恰好从出口走出的概率是()A. B. C. D. 【答案】B【解析】【分析】此题根据事件的三种可能性即可确定答案【详解】当从A口进,出来时有三种可能性即:B,C,D;恰好从C口走出的可能性占总的 ,故概率为;故答案选:B;【点睛】此题考查事件的可能性,根据事件发生的所有可能确定概率即可.4. 我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离千米,其中用科学记数法表示为()A. B. C. D. 【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将这个数用科学记数法表示为:.故选:C.【点睛】此题考查了科学记数法,熟练掌握科学记数法的基本要求并正确确定a及n的值是解题的关键.5. 如图是某市一天的气温随时间变化的情况,下列说法正确的是()A. 这一天最低温度是-4℃B. 这一天12时温度最高C. 最高温比最低温高8℃D. 0时至8时气温呈下降趋势【答案】A【解析】【分析】根据气温变化图逐项进行判断即可求解.【详解】解:A. 这一天最低温度是,原选项判断正确,符合题意;B. 这一天14时温度最高,原选项判断错误,不合题意;C. 这一天最高气温8℃,最低气温-4℃,最高温比最低温高,原选项判断错误,不合题意;D. 时至时气温呈先下降在上升趋势,原选项判断错误,不合题意.故选:A【点睛】本题考查了根据函数图象读取信息,理解气温随时间变化而变化并从中读取信息是解题关键.6. 下列运算正确的是()A. B. C. D. 【答案】A【解析】【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解.【详解】解:A. ,原选项计算正确,符合题意;B. ,原选项计算错误,不合题意;C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意.故选:A【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减等知识,熟知相关运算公式和法则是解题关键.7. 平面直角坐标系内与点关于原点对称的点的坐标是()A. B. C. D. 【答案】B【解析】【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,可以直接得到答案.【详解】解:∵P(3,4),∴关于原点对称点的坐标是(-3,-4),故选B.【点睛】此题主要考查了原点对称的点的坐标特点,关键是掌握坐标的变化规律:两个点关于原点对称时,它们的坐标符号相反.8. 如图,的半径为,于点,,则的长是()A. B. C. D. 【答案】C【解析】【分析】根据圆周角定理求出∠COB的度数,再求出∠OBD的度数,根据30°的锐角所对的直角边等于斜边的一半求出OD的长度.【详解】 ∵∠BAC=30°,∴∠COB=60°,∵∠ODB=90°,∴∠OBD=30°,∵OB=4,∴OD=OB==2.故选:C.【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.9. 一次函数y=2x+1的图像不经过 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.10. 《九章算
上传时间:2023-05-08 页数:30
412人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159(不支持接听,可加微信)
微信小程序
微信公众号
回到顶部