

浙江温州试题一、选择题(本题有20小题,每小题2分,共40分。请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分。)1. 2020年12月,十三届全国人大常委会第二十四次会议表决通过《______保护法》。该法对中华民族永续发展具有重大意义。()A. 珠江B. 长江C. 淮河D. 黄河2. 2021年2月20日,______学习教育动员大会召开。习近平总书记强调,全党同志要做到学史明理、学史增信、学史崇德、学史力行,以优异的成绩迎接建党100周年。()A. 党史B. 新中国史C. 社会主义发展史D. 改革开放史截至2021年5月,最美温州人——感动温州十大人物评选已成功举办16届。一个个感人故事铸就温州最美风景。完成下面小题。3. 2020最美温州人——川藏青光明行公益团队,十年来足迹遍布青藏高原150多个贫困乡村,先后完成各类体检30039人次、眼科手术3311台,帮助8980人重见光明。可见,该团队()①用奉献弘扬传统美德 ②用善举诠释生命意义③用医术履行基本义务 ④用行动捍卫国家尊严A. ①②B. ①④C. ②③D. ③④4. 评选活动开展至今,200余位最美温州人获得表彰。其中,有替亡子偿债的吴乃宜、身患绝症仍坚守讲台的陈莹丽等。褒扬这些模范,旨在()①延续文化血脉②发扬温州人精神③共享发展机遇④培育社会主义核心价值观A. ①②③B. ①②④C. ①③④D. ②③④5. 中学生小陈积极参与社区组织的禁毒宣讲活动,向社区居民宣传禁毒知识。同学们纷纷称赞小陈,这是因为他()A. 履行了社会责任B. 行使了文化权利C. 遵守了公共秩序D. 维护了合法权益6. 图中司法机关的做法()①惩治了违纪行为②奉行了依法行政的准则③促进了社会和谐④保护了烈士名誉、荣誉A. ①②B. ①④C. ②③D. ③④7. 2021年温州市两会期间,人大代表提交了一份份经走访调研形成的高言值议案建议,为温州十四五发展贡献智慧力量。这表明人大代表()A. 积极履行监察职责B. 有权表决各项决定C. 自觉接受政府监督D. 听取反映群众意见8. 宪法规定:乡、民族乡、镇的人民政府执行本级人民代表大会的决议和上级国家行政机关的决定和命令,管理本行政区域内的行政工作。这一规定体现宪法()A. 尊重保障人权B. 制定程序严格C. 规范权力运行D. 规定国家性质9. 2020年12月,义新欧(义乌——新疆——欧洲)中欧班列温州号从瓯海正式发车。今后,温州货物可在家门口的铁路口岸直接发往中亚、欧洲。中欧班列的发展()①扩大了对外开放的格局②提升了经济增长的活力③实现了城乡发展一体化④坚持了合作共赢的理念A. ①②③B. ①②④C. ①③④D. ②③④10. 2021年4月,中共中央对粤港澳大湾区建设作出重要战略部署,推进珠海横琴新区与澳门一体化建设,把横琴粤澳深度合作区打造为澳门居民生活就业新空间、经济适度多元发展新平台。此举将()①促进澳门更好融入国家发展 ②丰富一国两制实践的新示范③激活澳门经济发展的新引擎 ④实现民族地区经济跨越式发展A. ①②③B. ①②④C. ①③④D. ②③④11. 2021年4月29日,《中华人民共和国反食品浪费法》正式实施。某校开展学新法·反浪费为主题的社会调查,请你参与。【关注·探究】吃播是一种网络美食直播。据调查,近半数收看美食直播的观众钟情于大胃王吃播。某播主一次吃10桶泡面、6人份意面和8斤来饭,收获大量粉丝点赞。在利益的驱使下,衍生出一批通过假吃、催吐吸引粉丝的大胃王。《反食品浪费法》实施后,大胃王吃播节目在直播平台已难觅踪影。法律链接:《反食品浪费法》第二十二条第二款 禁止制作、发布、传播宣扬量大多吃、暴饮暴食等浪费食品的节目或者音视频信息。(1)从道德的角度,评析大胃王播主的行为。(2)从自由与法治的角度,分析禁止大胃王吃播节目的必要性。【认识·实践】据统计,中国城市每年餐饮食物浪费总量约为340-360亿斤(不含居民家庭食物浪费)。中国社会科学院研究报告称,到2025年中国可能出现2600亿斤左右粮食缺口。(3)根据统计数据,完成调查报告提纲的主要内容。(要求:①针对现象,概括问题;②从规则、法治、道德等任选一个角度,提出建议;③运用
上传时间:2023-05-08 页数:3
271人已阅读
(5星级)
停留在黑砖上的概率一.填空题1.一个家庭有两个孩子,一男一女的概率为_________________.2.将一个子连续抛再次,朝上的一面,再次都是奇数的概率是______________,两次数字和等于5的概率为______________.3.有10个乒乓球,其中五个红色,五个白色,第一次摸出一个红球后,再接着摸,则摸到红球的概率为___________.4.某校八年级有45人参加期末考试,其中有43人及格,从中人任意抽取一张卷子,抽中不及格的概率为___________.5.小颖今天做32道竞赛题,她做对每道题的概率都是0.7,她两题都对的概率是_________.二.选择题6.从标有号码1到200的200张卡片中,随意抽出一张,其号码为3的倍数的概率是( )A.B. C. D. 不确定7.一个盒子中有10个红球,9个黑球,则从中摸n个球至少一个红球的概率为1时,n的最小值为() A. 9B. 10C. 11D. 128.小明掷一枚硬币,结果是一连9次都掷出正面朝上,请问他第10次掷硬币时,出现正面朝上的概率为 ( )A.B.C.D. 19.设计一个摸球游戏,每摸球一次,使得摸到白色的概率是,摸到红球的概率是,摸到黄球的概率是,则完成这个游戏所需球的个数最少为 ( ) A. 6个B. 12个 C.24个D. 36个10.小颖向一袋中装进a只红球,b只白球,它们除颜色不同外,没有其他差别,她让小明从袋中任意摸出一球,问他摸出的球是红球的概率为( )A.B.C. D.三.解答题11. 某人装修自己的客厅,选择了两种不同颜色的地砖白色和红色,其中白色为44块,红色为11块,铺完之后有朋友来探望他,请问:他的朋友在客厅踩到红色地板砖的概率是多少?四.开放演练12. 有一个摆地摊的赌主,把8个白的,8个黑的围棋子放在一个袋子里,他规定:凡愿意摸彩者,每人交1元钱作为手续费,然后从袋子里摸出5个棋子,中彩的情况如下:摸棋情况 5个白棋4个白棋3个白棋其他中彩彩金20元2元0.5元无试计算:①一次能够摸到20元的概率.②一次能够摸到2元的概率.③摸彩如果为1000次,此时摊主最多能赚多少钱,最少能赚多少钱?说明了一个什么事实?
上传时间:2023-04-30 页数:3
271人已阅读
(5星级)
应用多项式除以单项式的运算法则时,应注意的问题是什么(1)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏项;(2)要熟练地进行多项式除以单项式的运算,必须掌握它的基础运算,幂的运算性质是整式乘除法的基础,只有抓住关键的一步,才能准确地进行多项式除以单项式的运算;(3)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,要注意每一项的符号和单项式的符号。例1计算:(1);(2)。思路启迪:此题应先利用法则把多项式除以单项式的运算转化为单项式除以单项式的运算,进而求出最后结果。其中第(2)小题中应将多项式看成一个单项式来计算。规范解法(1)原式 ;(2)原式 。例2计算:(1);(2)。规范解法(1)原式;(2)原式 。点评:第(1)题不能先用去除各项,应先对括号内进行化简。第(2)题体现了对知识的综合运用。例3 (1)已知一个多项式与单项式的积为,求这个多项式;(2)已知一个多项式除以多项式所得的商式是,余式是,求这个多项式。思路启迪:利用乘法和除法互为逆运算的关系求解。规范解法(1)根据题意,所求多项式为。(2)根据题意,所求多项式为:注 此题求解的根据是被除式=除式×商式+余式。
上传时间:2023-04-30 页数:2
271人已阅读
(5星级)
同底数幂的除法1.填空:(1) __________;(2) ;(3);(4) _______;(5)(a-b)6÷(b-a)3=__________;(6)科学记数法表示 _____________; (7) 所表示的小数是___________. 2.选择:(1)下面计算中,正确的是( )A.B.C. D. (2)(-bc )÷ (-bc )的运算的结果是( )A.bc B.-bc C.-bc D.bc (3) 的运算结果是( )A. B. C. D. (4)下列算式正确的是( ) A. B. C. D.3.计算:解:(1)xn+2÷xn-2 (2)50×10-2 (3)y10÷y3÷y4 (4)(-ab)5÷(-ab)3(5) (a-b) 5÷ (b-a) 3 (6)m 17÷ m 13 ·m3÷ m (8)(b2)3·(-b3)4 ÷(b 5)3 (9)93× 274÷ (-3)184.(中考题)若a= 3 ,a= 5, 求:(1) a的值? (2) a的值?5.(中考题)若9n·27n-1÷33n+1=81,求n--2的值.
上传时间:2023-04-30 页数:2
271人已阅读
(5星级)
同底数幂的除法一、选择题1.在下列运算中,正确的是()A.a2÷a=a2B.(-a)6÷a2=(-a)3=-a3C.a2÷a2=a2-2=0D.(-a)3÷a2=-a2.如果(x-2)0有意义,那么x的取值范围是()A.x>2B.x<2C.x=2 D.x≠23.在下列运算中,错误的是()A.a2m÷am÷a3=am-3 B.am+n÷bn=amC.(-a2)3÷(-a3)2=-1 D.am+2÷a3=am-14.下列运算正确的是()A.-(-1)=-1 B.(-1)=-1C.(-1)0=-1 D.│-1│=-1二、填空题5.(-x2)3÷(-x)3=_____.6.[(y2)n] 3÷[(y3)n] 2=______.7.104÷03÷102=_______.8.(-3.14)0=_____.三、计算题9.计算:x10÷x5-(-x)9÷(-x4).10.已知am=6,an=2,求a2m-3n的值.B卷:提高题一、七彩题1.(一题多解题)计算:(a-b)6÷(b-a)3.2.(巧题妙解题)计算:2-1+2-2+2-3+…+2-2010.二、知识交叉题3.(科内交叉题)若9n·27n-1÷33n+1=81,求n-2的值.4.(科外交叉题)某种植物的花粉的直径约为3.5×10-5米,用小数把它表示出来三、实际应用题5.一颗人造地球卫星的速度是2.844×107米/时,一辆汽车的速度是100千米/时,试问这颗人造地球卫星的速度是这辆汽车的多少倍?四、经典中考题6.下列运算中,正确的是()A.x2+x2=x4 B.x2÷x=x2C.x3-x2=x D.x·x2=x37.下列计算正确的是()A.a3+a4=a7 B.a3·a4=a7 C.(a3)4=a7 D.a6÷a3=a2参考答案A卷一、1.D点拨:a2÷a=a2-1=a,所以A错;(-a)6÷a2=a6÷a2=a6-2=a4,所以B错;a2÷a2=a2-2=a0=1,所以C也错;(-a3)2÷a=-a3÷a2=-a3-2=-a,D正确,故选D.2.D点拨:根据零指数幂的规定,x-2≠2,即x≠2,故选D.3.B点拨:a2m÷am÷a3=a2m-m÷a3=am÷a3=am-3,A正确;am+n÷bn不是同底数幂,指数不能相减,所以B错误;(-a2)3÷(-a3)2=(-a6)÷a6=-a6-6=-a0=-1,C正确;am+2÷a3=am+2-3=am-1,D也正确,故选B.4.B二、5.x3点拨:(-x2)3÷(-x)3=(-x6)÷(-x3)=x6-3=x3.6.1点拨:[(y2)n] 3÷[(y3)n] 2=(y2n)3÷(y3n)2=y6n÷y6n=y6n-6n=y0=1.7.1000点拨:104÷103×102=104-3×102=10×102=101+2=103=1000.8.1点拨:因为-3.14≠0,所以(-3.14)0=1.三、9.解:x10÷x5+(-x)9÷(-x4)=x10-5+(-x9)÷(-x4)=x5+x9-4=x5+x5=2x5.10.解:因为am=6,an=2,所以a2m-3n=a2m÷a3n=(am)2÷(an)3=62÷23=36÷8=92.B卷一、1.解法一:(a-b)6÷(b-a)3=(b-a)6÷(b-a)3=(b-a)6-3=(b-a)3.解法二:(a-b)6÷(b-a)3=(a-b)6÷[-(a-b)] 3=(a-b)6÷[-(a-b)3]=-(a-b)6-3=-(a-b)3.点拨:注意a-b与b-a是互为相反数,其偶次幂相等,其奇次幂仍是互为相反数.2.解:设S=2-1+2-2+2-3+…+2-2010, ①则2S=2×2-1+2×2-2+2×2-3+…+2×2-2010=20+2-1+2-2+…+2-2009=1+2-1+2-2+…+2-2009[来m]即2S=1+2-1+2-2+…+2-2009, ②由②-①得S=1-2-2010,即2-1+2-2+2-3+…+2-2010=1-2-2010.点拨:直接计算相当繁杂,又易出错,本题解法巧妙地把计算题转化为解方程题,运用错项相减法,简便解决问题.二、3.解:由9n·27n-1÷33n+1=81,得(32)n·(33)n-1÷33n+1=34,3
上传时间:2023-04-30 页数:4
271人已阅读
(5星级)
1.5 同底数幂的除法一、填空题:(每题3分,共30分)1.计算52()()xx=_______,10234xxxx =______.2.水的质量0.000204kg,用科学记数法表示为__________.3.若0(2)x有意义,则x_________.4.02(3)(0.2)=________.5.2324[()()]()mnmnmn =_________.6.若5x-3y-2=0,则531010xy=_________.7.如果3,9mnaa,则32mna=________.8.如果3147927381mmm,那么m=_________.9.若整数x、y、z满足91016()()()28915xyx,则x=_______,y=_______,z=________.10.2721(5)(5)248mnabab,则m、n的关系(m,n为自然数)是________.二、选择题:(每题4分,共28分)11.下列运算结果正确的是( )①2x3-x2=x ②x3·(x5)2=x13 ③(-x)6÷(-x)3=x3④(0.1)-2×10- 1=10 A.①②B.②④ C.②③D.②③④12.若a=-0.32,b=-3-2,c=21()3,d=01()3, 则( ) A.a<b<c<d B.b<a<d<cC.a<d<c<bD.c<a<d<b13.若21025y,则10y等于( ) A.15B.1625 C.-15或15D.125 14.已知9999909911,99Q,那么P、Q的大小关系是( ) A.P>Q B.P=QC.P<QD.无法确定15.已知a≠0,下列等式不正确的是( ) A.(-7a)0=1B.(a2+12)0=1C.(│a│-1)0=1 D.01()1a16.若35,34mn,则23mn等于( ) A.254 B.6 C.21D.20三、解答题:(共42分)17.计算:(12分)(1)03321()(1)()333;(2)15207(27)(9)(3);(3)33230165321()()()()(3)356233.(4)2421[()]()nnxyxy (n是正整数).18.若(3x+2y-10)0无意义,且2x+y=5,求x、y的值.(6分)19.化简:4122(416)nnn.(6分)20.已知235,310mn,求(1)9mn;(2)29mn.(6分)21.已知1xxm,求22xx 的值.(6分)22.已知2(1)1xx,求整数x.(6分)参考答案1.-x3,x 2.2.04×10-4kg3.≠24.265.(m-n)66.1007.138.29.3,2,210.2m=n11.B12.B13.C14.B15.C16.A17.(1)9(2)9(3)1(4)61()nxy18.x=0,y=519.020.(1)2222219(3)333510020mnmnmnmn. (2)2222222219(3)(3)(3)5104mnmnmn.21.22122()22xxxxm22.①当x+2=0时,x+1≠0,x=-2 ②当x-1=1时,x=2 ③当x-1=-1时,x+2为偶数,这时x=0∴整数x为-2,0,2.
上传时间:2023-04-30 页数:4
271人已阅读
(5星级)
中考总复习:函数综合—巩固练习(基础)【巩固练习】一、选择题1.(2015•武汉模拟)二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是() A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠02.如图,直线和双曲线 (k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1、△BOD面积是S2、△POE面积是S3、则()A. S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3 3.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()4.已知一次函数的图象如图所示,那么a的取值范围是()A.a>1 B.a<1 C.a>0 D.a<05.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.y=xD.y=6.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4二、填空题17.(2016•贵阳模拟)如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为.8.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是________米.9.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为________.10.如图所示,点A是双曲线在第二象限的分支上的任意一点,点B,C,D分别是A关于x轴、原点、y轴的对称点,则四边形ABCD的面积是________.第8题第10题 第11题11.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再经过A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此做法进行下去,点A5的坐标为(________,________).12.已知二次函数(a为常数),当a取不同的值时,其图象构成一个抛物线系,下图分别是当a=-1,a=0,a=1,a=2时二次函数的图象,它们的顶点在一条直线上,这条直线的解析式是y=_______.三、解答题213.直线交反比例函数的图象于点A,交x轴于点B,点A,B与坐标原点O构成等边三角形,求直线的函数解析式.14.(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.15.已知如图所示,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°. (1)求点A的坐标;(2)若直线AB交y轴于点C,求△AOC的面积.16.如图所示,等腰三角形ABC以2米/秒的速度沿直线向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为y平方米.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?3【答案与解析】一、选择题1.【答案】D;【解析】∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.2.【答案】D;【解析】S1=S△AOC=k,S2=S△BOD=k,S3=S△POE>k.所以S1=S2<S3.3.【答案】C;【解析】散步时用时较长,而跑步用时较短,打一会太极拳说明这一时间段离家的距离不变,因而只有C选项符合.4.【答案】A;【解析】由图象可知k>0,即a-1>0,所以a>1.5.【答案】D;【解析】y=分布
上传时间:2023-04-30 页数:7
271人已阅读
(5星级)
中考总复习:函数综合—知识讲解(提高)【考纲要求】1.平面直角坐标系的有关知识 平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等.2.函数的有关概念 求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法.3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置.4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值. 一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】 【考点梳理】考点一、平面直角坐标系1.相关概念1 (1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点 (2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移要点诠释: 点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y;(2)点P(x,y)到y轴的距离等于x;(3)点P(x,y)到原点的距离等于22yx.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义 3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题要点诠释: 确定一个正比例函数,就是要确定正比例函数定义式kxy(k0)中的常数k;确定一个一次函数,需要确定一次函数定义式bkxy(k0)中的常数k和b.解这类问题的一般方法是待定系2数法.考点四、反比例函数1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题要点诠释: 反比例函数中反比例系数的几何意义,如下图,过反比例函数图像上任一点 作x轴、y轴的垂线PM,PN,垂足为M、N,则所得的矩形PMON的面积S=PMPN=.∴.考点五、二次函数1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法)如图:点A坐标为(x1,y1),点B坐标为(x2,y2),则AB间的距离,即线段AB的长度为221221yyxx. 32、函数平移规律:左加右减、上加下减.3、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;如果在此范围内,y随x的增大而减小,则当时,,当时,. 4、抛物线的对称变换①关于轴对称关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是.②关于轴对称关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是.③关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是.④关于顶点对称4关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.⑤关于点对称 关于点对称后,得到的解析式是
上传时间:2023-04-30 页数:18
271人已阅读
(5星级)
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(提高)【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会变化与对应的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】 【考点梳理】考点一、平面直角坐标系1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把形(平面内的点)和数(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点点P(x,y)在第一象限;点P(x,y)在第二象限;点P(x,y)在第三象限;点P(x,y)在第四象限;点P(x,y)在x轴上,x为任意实数;1点P(x,y)在y轴上,y为任意实数;点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等;点P(x,y)在第二、四象限夹角平分线上x与y互为相反数.4.和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同;位于平行于y轴的直线上的各点的横坐标相同.5.关于x轴、y轴或原点对称的点的坐标的特征点P与点p′关于x轴对称横坐标相等,纵坐标互为相反数;点P与点p′关于y轴对称纵坐标相等,横坐标互为相反数;点P与点p′关于原点对称横、纵坐标均互为相反数.6.点P(x,y)到坐标轴及原点的距离(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于;(3)点P(x,y)到原点的距离等于.7.在平面直角坐标系内两点之间的距离公式如果直角坐标平面内有两点,那么A、B两点的距离为:.两种特殊情况:(1)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:(2)在直角坐标平面内,轴或平行于轴的直线上的两点的距离为:要点诠释:(1)注意:x轴和y轴上的点,不属于任何象限;(2)平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标.考点二、函数1.函数的概念设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法2⑴解析法;⑵列表法;⑶图象法.4.画函数图象 (1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.要点诠释: (1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质 (1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.(2)正比例函数y=kx( k≠0)的图象: 过(0,0),(1,K)两点的一条直线. (3)正比例函数y=kx (k≠0)的性质①当k>0时,图象经过第一、三象限,y随x的增大而增大;②当k<0时,图象经过第二、四象限,y随x的增大而减小 .2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数y=kx+b(k≠0)的图象3(3)一次函数y=kx+b(k≠0)的图象的性质一次函数y=kx+b的图象是经过(0,b)点和点的一条直线.①当k>0时,y随x的增大而增大;②当k<0时,y随x的增大而减小. (4)用函数观点看方程(组)与不等式①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.②二元一次方程组对应两个一次函数,于是也对应两条直线,从数的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从形的角度看,解方程组相当于确定两条直线的交点的坐标.③任何一元一次不等式都可以转化ax+b>0或ax+
上传时间:2023-04-30 页数:18
271人已阅读
(5星级)
中考总复习:全等三角形—知识讲解【考纲要求】1. 掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.13. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加: ①遇到等腰三角形,可作底边上的高,利用三线合一的性质解题,思维模式是全等变换中的对折;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的旋转;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的对折,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的平移或翻转折叠;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ. 【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高, ∴∠1+∠CAE=90°,∠2+∠CAE=90°. ∴∠1=∠2,∵在△AQC和△PAB中,2 ∴△AQC≌△PAB.∴ AP=AQ. (2)∵ AP=AQ,∠QAC=∠P, ∵∠PAD+∠P=90°, ∴∠PAD+∠QAC=90°,即∠PAQ=90°. ∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【变式】 (2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.3【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE
上传时间:2023-04-30 页数:10
271人已阅读
(5星级)
中考总复习:实数—巩固练习 (提高)【巩固练习】一、选择题1. 在实数π、13、2、sin30°,无理数的个数为( )A.1B.2C.3 D.42. 对于实数a、b,给出以下三个判断: ①若ba,则 ba.②若ba,则 ba. ③若ba,则 22)(ba.其中正确的判断的个数是( )A.3B.2C.1D.03.(2015•河南一模)据统计,2014年河南省机动车保有量突破280万辆,对数据280万的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×1064.如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.2 C. D. 5.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是( )A.38 B.52 C.66D.746. 若a、b两数满足567a3=103,a103=b,则ba之值为( )A.9656710 B.9356710 C.6356710 D.56710二、填空题7.(1)先找规律,再填数:102842462246844m61111111111111111,,,,122342125633078456111+_______.2011201220112012则(2)对实数a、b,定义运算★如下:a★b=(,0)(,0)bbaabaaaba,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)]= .8.已知:,,观察前面的计算过程,寻找计算规律计算27A (直接写出计算结果),并比较59A310A(填或或=)9.右图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是;当字母C第201次出现时,恰好数到的数是 ;当字母C第2n+1次出现时(n为正整数),恰好数到的数是 (用含n的代数式表示).10.根据如图所示的程序计算,若输入x的值为1,则输出y的值为___________. 11.已知,当n=1时,a1=0;当n=2时,a2=2;当n=3时,a3=0;…则2a1+a2+a3+a4+a5+a6 的值为___________.12.(2014秋•石家庄期末)观察图形:请用你发现的规律直接写出图4中y的值 .三、解答题13.对于任何实数,我们规定符号cadb的意义是:cadb=bcad.按照这个规定请你计算:当0132xx时,21xx 13xx的值.14.(2014•营口模拟)小彬在做数学题时,发现下面有趣的结果:32=1﹣8+765=4﹣﹣15+14+13121110=9﹣﹣﹣24+23+22+2120191817=16﹣﹣﹣﹣…根据以上规律可知第99行左起第一个数是.15.根据以下10个乘积,回答问题:11×29; 12×28; 13×27; 14×26; 15×25;16×24; 17×23; 18×22; 19×21; 20×20.(1)试将以上各乘积分别写成一个□2-○2(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;(3)试由(1)、(2)猜想一个一般性的结论.(不要求证明)16.已知等边△OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于点A2.(1)求线段OA2的长;(2)若再以OA2为边按逆时针方向作等边△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…,△OAnBn(如图).求△OA6B6的周长.3 【答案与解析】一、选择题1. 【答案】B;【解析】π、2是无理数.2.【答案】C;【解析】通过举反例说明①②是不对的,只有③是正确的. 3.【
上传时间:2023-04-30 页数:6
271人已阅读
(5星级)
中考总复习:图形的变换--巩固练习(基础)【巩固练习】一、选择题1. 以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有(). A.4个 B.5个 C.6个D.3个2.有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是(). A.①③ B.①②C.②③D.②④3.在图形的平移中,下列说法中错误的是().A.图形上任意点移动的方向相同; B.图形上任意点移动的距离相同C.图形上可能存在不动点; D.图形上任意对应点的连线长相等4.如图,O是正六边形ABCDEF的中心,下列图形可由△OBC平移得到的是().A.△OCD B.△OAB C.△OAF D.△OEF5.(2017•莒县模拟)如图,△ABC的面积为2,将△ABC沿AC方向平移到△DFE,且AC=CD,则四边形AEFB的面积为()A.6 B.8 C.10 D.126.如图所示,△ABC中,AC=5,中线AD=7,△EDC是由△ADB旋转180°所得,则AB边的取值范围是().A.l<AB<29 B.4<AB<24 C.5<AB<19 D.9<AB<19二、填空题7. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折后得△AGE,那么△AGE与四边形AECD重叠部分的面积是 .1 第7题 第8题8.(2016·黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为_______. 9. 如图,一张矩形纸片,要折叠出一个最大的正方形纸,小明把矩形的一个角沿折痕翻折上去,使AB边和AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他的判定方法是________. 第9题 第10题10. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=cm.11.(2016•郑州一模)如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为 .12.如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与ABBC,相交,交点分别为NM,.如果yONxOMADAB,,6,4,则y与x的关系式为.2三、解答题13.(2015•南充)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=,求AB的长.14.把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的516?若存在,求出此时x的值;若不存在,说明理由.315.如图,将矩形纸片ABCD按如下顺序进行折叠: 对折、展平, 得折痕EF(如图①); 沿GC折叠, 使点B落在EF上的点B′ 处(如图②); 展平, 得折痕GC(如图③); 沿GH折叠, 使点C落在DH上的点C′处(如图④); 沿GC′ 折叠(如图⑤); 展平, 得折痕GC′、GH(如图⑥).(1)求图②中∠BCB′ 的大小;(2)图⑥中的△GCC′ 是正三角形吗?请说明理由. 图⑤ABCDGHA'C'图
上传时间:2023-04-30 页数:9
271人已阅读
(5星级)
中考冲刺:观察、归纳型问题—知识讲解(基础)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着特殊——一般——特殊的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n=1,2,3…代入验证,都符合时即为正确结论.【典型例题】类型一、数式归纳1.试观察下列各式的规律,然后填空:2(1)(1)1xxx;23(1)(1)1xxxx;324(1)(1)1xxxxx;…;则109(1)(xxx…1)x________.【思路点拨】根据前几个等式的规律,不难得出1(1)(nnxxx…11)1nxx.【答案与解析】1答案:111x.【总结升华】此题归纳方法很多,注意每行数字的变化规律和符号规律.举一反三:【变式1】观察下列各式: (x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;… … …(1)根据规律填空 (x-1)(xn+xn-1+…+x+1)=__ __________.(2)根据规律计算 2100+299+298+297+…+22+2 +1= .【答案】(1) xn+1-1 ; (2) 2101-1.【变式2】按一定规律排列的一列数依次为: 14916,,,,,3579按此规律排列下去,这列数中的第5个数是 ,第n个数是 .【答案】225n;.112n+1类型二、图形变化归纳2.(招远市期末)如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2012次闪烁呈现出来的图形是()A.B.C.D.【思路点拨】从所给四个图形中可以得出每旋转一次的度数,根据阴影所处的位置的规律即可算出2012次之后的图形.【答案与解析】解:易得每旋转一次,旋转角为90°,即每4次旋转一周,∵2012÷4=503,即第2012次与第4次的图案相同.故选B.【总结升华】找到图形的变化规律是解题的关键.举一反三:【变式】如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()2A. B. C.D.【答案】A.3.(2015•海宁市模拟)操作:将一个边长为1的等边三角形(如图1)的每一边三等分,以居中那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(如图2),称为第一次分形.接着对每个等边三角形凸出的部分继续上述过程,即在每条边三等分后的中段向外画等边三角形,得到一个新的图形(如图3),称为第二次分形.不断重复这样的过程,就能得到雪花曲线.问题:(1)从图形的对称性观察,图4是 图形(轴对称或中心对称图形)(2)图2的周长为 ;(3)试猜想第n次分形后所得图形的周长为.【
上传时间:2023-04-30 页数:7
271人已阅读
(5星级)
冲刺:几何综合问题(基础)一、选择题1.(2016•天水)如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是() A. B. C. D.2. 如图,将直角三角形ABC沿着斜边AC的方向平移到△DEF的位置(A、D、C、F四点在同一条直线上).直角边DE交BC于点G.如果BG=4,EF=12,△BEG的面积等于4,那么梯形ABGD的面积是()A. 16 B. 20 C. 24 D. 28二、填空题3.(2016•海淀区二模)据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.如图所示,木杆EF的长为2m,它的影长FD为3m,测得OA为201m,则金字塔的高度BO为______ m.4. 如图,线段AB=8cm,点C是AB上任意一点(不与点A、B重合),分别以AC、BC为1斜边在AB的同侧作等腰直角三角形(△AMC和△CNB),则当BC=_____________cm时,两个等腰直角三角形的面积和最小.三、解答题5. 有一根直尺的短边长2cm,长边长10cm,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm.如图①,将直尺的短边DE与直角三角形纸板的斜边AB重合,且点D与点A重合; 将直尺沿AB方向平移(如图②),设平移的长度为xcm( 0≤x≤10 ),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm2.(1)当x=0时(如图①),S=________;(2)当0<x≤4时(如图②),求S关于x的函数关系式;(3)当4<x<6时,求S关于x的函数关系式;(4)直接写出S的最大值. 6. 问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数. 7. 如图正三角形ABC的边长为6cm,⊙O的半径为rcm,当圆心O从点A出发,沿着线路AB-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.2⑴若r=cm,求⊙O首次与BC边相切时,AO的长;⑵在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同情况下r的取值范围及相应的切点的个数;⑶设⊙O在整个移动过程中,在△ABC内部,⊙O未经过的部分面积为S,在S>0时,求关于r的函数解析式,并写出自变量r的取值范围. 8. (2015•德州)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.9. 如图,直角梯形ABCD中,AD∥BC,∠B=90°,AB=12 cm,BC=9 cm,DC=13 cm,点P是线段AB上一个动点.设BP为x cm,△PCD的面积为y cm2.(1)求AD 的长;(2)求y与x之间的函数关系式,并求出当x为何值时,y有最大值?最大值是多少?(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出x的值;若不存在,请说明理由.
上传时间:2023-04-30 页数:11
271人已阅读
(5星级)
中考冲刺:数形结合问题—巩固练习(基础)【巩固练习】一、选择题1.(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个 C.3个D.4个2.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A 、222b)-a(=b-a B、222b+ab2+a=)b+a(C、222b+ab2-a=)b-a( D、22-b()(-b)aaba二、 填空题3. 实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的序号为____________.①b+c>0 ②a+b>a+c ③ac<bc ④ab>ac4.(2016•通辽)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0 ②b2﹣4ac>0 ③4b+c<0 1④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号) .三、解答题5.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么2个小时时血液中含药最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后.(1)分别求出x≤2和x≥2时y与x的函数解析式;(2)如果每毫升血液中含量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间有多长?yxO236106.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形. (1)你认为图2中的阴影部分的正方形的边长等于 _____;(2)请用两种不同的方法求图2中阴影部分的面积.① ______②_______; (3)观察图2你能写出下列三个代数式之间的等量关系吗?(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.27.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的便民卡与如意卡在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;(2)请帮用户计算,在一个月内使用哪一种卡便宜.8.(长宁区二模)如图,一次函数y=ax1﹣(a≠0)的图象与反比例函数y=( k≠0)的图象相交于A、B两点且点A的坐标为( 2,1),点B的坐标(﹣1,n).(1)分别求两个函数的解析式; (2)求△AOB的面积.9.请同学们仔细阅读如图所示的计算机程序框架图,回答下列问题:(1)如果输入值为2,那么输出值是多少?(2)若要使输入的x的值只经过一次运行就能输出结果,求x的取值范围;(3)若要使开始输入的x的值经过两次运行才能输出结果,那么x的取值范围又是多少?310.观察如图所包含规律(图中三角形均是直角三角形,且一条直角边始终为1,四边形均为正方形.S1,S2,S3,…Sn依次表示正方形的面积,每个正方形边长与它左边相邻的直角三角形斜边相等),再回答下列问题.(1)填表:直角边A1B1A2B2A3B3A4B4…AnBn长度1…(2)当s1+s2+s3+s4+…+sn=465时,求n.11.某报社为了了解读者对该报社一种报纸四个版面的认可情况,对读者做了一次问卷凋查,要求读者选出自己最喜欢的一个版面,并将调查结果绘制成如下的统计图,请你根据图中提供的信息解答下列问题.(1)在这次活动中一共调查了多少读者?(2)在扇形统计图中,计算第一版所在扇形的圆心角度数;(3)请你求出喜欢第四版的人数,并将条形统计图补充完整.4 【答案与解析】一、选择题1.【答案】C;【解析】∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,
上传时间:2023-04-30 页数:9
271人已阅读
(5星级)
中考冲刺:阅读理解型问题—巩固练习(提高)【巩固练习】一、选择题1. (2016•绍兴)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即结绳计数.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84B.336 C.510D.13262.任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:()pFnq.例如18可以分解成1×18,2×9,3×6这三种,这时就有31(18)62F.给出下列关于F(n)的说法:(1)1(2)2F;(2)3(24)8F;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A.1B.2C.3D.4 二、填空题3.阅读下列题目的解题过程:已知a、b、c为△ABC的三边长,且满足222244acbcab,试判断△ABC的形状.解:∵222244acbcab,(A)∴2222222()()()cababab,(B)∴222cab, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请写出该错误步骤的代号:________________.(2)错误的原因为:________________________.(3)本题的正确结论为:____________________.4.(2016•高县一模)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:1①AE=6cm;②sin∠EBC=;③当0<t≤10时,y=t2; ④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是.三、解答题5. 已知p2-p-1=0,1-q-q2=0,且pq≠1,求1pqq的值.解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0又∵pq≠1,∴1pq∴1-q-q2=0可变形为21110qq的特征所以p与1q是方程x 2- x -1=0的两个不相等的实数根则111,1pqpqq根据阅读材料所提供的方法,完成下面的解答.已知:2m2-5m-1=0,21520nn,且m≠n,求:11mn的值.6.(市北区二模)【阅读材料】完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.【问题探究】完成沿图1的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多少种不同的走法?(1)根据材料中的原理,从A点到M点的走法共有(1+1)=2种.从A点到C点的走法:①从A点先到N点再到C点有1种;②从A点先到M点再到C点有2种,所以共有(1+2)=3种走法.依次下去,请求出从A点出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?2(2)运用适当的原理和方法,算出如果直接从C点出发到达B点,共有多少种走法?请仿照图2画图说明.【问题深入】(3)在以上探究的问题中,现由于交叉点C道路施工,禁止通行,求从A点出发能顺了到达BB点的走法数?说明你的理由.7.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①. 观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组1210xxy的解,所以这个方程组的解为13xy在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③. ①②③回答下列问题:3P(1
上传时间:2023-04-30 页数:10
271人已阅读
(5星级)
投影与视图—知识讲解 【学习目标】1.以分析实际例子为背景,认识投影和视图的基本概念和基本性质;2.通过讨论简单立体图形(包括相应的表面展开图)与它的三视图的相互转化,经历画图、识图等过程,分析立体图形和平面图形之间的联系,提高空间想象能力;3.通过制作立体模型的学习,在实际动手中进一步加深对投影和视图知识的认识,在实践活动中培养实际操作能力.【要点梳理】要点一、平行投影1.一般地,用光线照射物体,在某个平面(地面或墙壁等)上得到的影子,叫做物体的投影.只要有光线,有被光线照到的物体,就存在影子.太阳光线可看做平行的,象这样的光线照射在物体上,所形成的投影叫做平行投影.由此我们可得出这样两个结论:(1)等高的物体垂直地面放置时,如图1所示,在太阳光下,它们的影子一样长.(2)等长的物体平行于地面放置时,如图2所示,它们在太阳光下的影子一样长,且影长等于物体本身的长度.2. 物高与影长的关系(1)在不同时刻,同一物体的影子的方向和大小可能不同.不同时刻,物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚,物体影子的指向是:西→西北→北→东北→东,影长也是由长变短再变长.(2)在同一时刻,不同物体的物高与影长成正比例.即:.利用上面的关系式可以计算高大物体的高度,比如旗杆的高度等.注意:利用影长计算物高时,要注意的是测量两物体在同一时刻的影长.要点诠释:1.平行投影是物体投影的一种,是在平行光线的照射下产生的.利用平行投影知识解题要分清不同时刻和同一时刻.2.物体与影子上的对应点的连线是平行的就说明是平行光线.要点二、中心投影若一束光线是从一点发出的,像这样的光线照射在物体上所形成的投影,叫做中心投影.这个点就是中心,相当于物理上学习的点光源.生活中能形成中心投影的点光源主要有手电筒、路灯、台灯、投影仪的灯光、放映机的灯光等.相应地,我们会得到两个结论:(1)等高的物体垂直地面放置时,如图1所示,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.1 (2)等长的物体平行于地面放置时,如图2所示.一般情况下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.在中心投影的情况下,还有这样一个重要结论:点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三个点的位置.要点诠释:光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分离在物体的两侧.要点三、中心投影与平行投影的区别与联系1.联系:(1)中心投影、平行投影都是研究物体投影的一种,只不过平行投影是在平行光线下所形成的投影,通常的平行光线有太阳光线、月光等,而中心投影是从一点发出的光线所形成的投影,通常状况下,灯泡的光线、手电筒的光线等都可看成是从某一点发射出来的光线.(2)在平行投影中,同一时刻改变物体的方向和位置,其投影也跟着发生变化;在中心投影中,同一灯光下,改变物体的位置和方向,其投影也跟着发生变化.在中心投影中,固定物体的位置和方向,改变灯光的位置,物体投影的方向和位置也要发生变化.2.区别:(1)太阳光线是平行的,故太阳光下的影子长度都与物体高度成比例;灯光是发散的,灯光下的影子与物体高度不一定成比例.(2)同一时刻,太阳光下影子的方向总是在同一方向,而灯光下的影子可能在同一方向,也可能在不同方向.要点诠释:在解决有关投影的问题时必须先判断准确是平行投影还是中心投影,然后再根据它们的具体特点进一步解决问题.要点四、正投影 正投影的定义: 如图所示,图(1)中的投影线集中于一点,形成中心投影;图(2)(3)中,投影线互相平行,形成平行投影;图(2)中,投影线斜着照射投影面;图(3)中投影线垂直照射投影面(即投影线正对着投影面),我们也称这种情形为投影线垂直于投影面.像图(3)这样,投影线垂直于投影面产生的投影叫做正投影.(1)线段的正投影分为三种情况.如图所示.2 ①线段AB平行于投影面P时,它的正投影是线段A1B1,与线段AB的长相等;②线段AB倾斜于投影面P时,它的正投影是线段A2B2,长小于线段AB的长;③线段AB垂直于投影面P时,它的正投影是一个点.(2)平面图形正投影也分三种情况,如图所示.①当平面图形平行于投影面Q时,它的正投影与这个平面图形的形状、大小完全相同,即正投影与这个平面图形全等;②当平面图形倾斜于投影面Q时,平面图形的正投影与这个平
上传时间:2023-04-30 页数:8
271人已阅读
(5星级)
图形的相似和比例线段--巩固练习(基础)【巩固练习】一.选择题1.(2014秋•慈溪市期末)如图,用放大镜将图形放大,这种图形的改变是()A.相似 B.平移 C.轴对称 D.旋转2. 下列四条线段中,不能成比例的是() A. =2,=4,=3,=6B. =,=,=1,=C. =6,=4,=10,=5D. =,=2,=,=23. 下列命题正确的是()A.所有的等腰三角形都相似 B.所有的菱形都相似C.所有的矩形都相似 D.所有的等腰直角三角形都相似4. 某学习小组在讨论变化的鱼时,知道大鱼与小鱼是相似图形,如图所示,则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,-2b) B.(-a,-2b) C.(-2b,-2a) D.(-2a,-b)5. 一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则此三角形其它两边的和是()A.19 B.17 C.24 D.21 6. .△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 ()A. B. C.或 D.二. 填空题7. 两地实际距离为1 500 m,图上距离为5 cm,这张图的比例尺为_______.18. 若,则________9.判定两个多边形相似的方法是:当两个多边形的对应边_______,对应角_______时,两个多边形相似.10.已知则11.两个三角形相似,其中一个三角形两个内角分别是40°,60°,则另一个三角形的最大角为______,最小角为____________.12.(2015春·庆阳校级月考) 要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一条最短边长为2,则另外一个三角形的周长为 .三 综合题13. (2014春•徐州校级月考)(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长;(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项,求线段c的长.14. 如图,依次连接一个正方形各边的中点所形成的四边形与正方形相似吗?若相似,求出相似比;若不相似,说明理由.15. 市场上供应的某种纸有如下特征:每次对折后,所得的长方形均和原长方形相似,则纸张(矩形)的长与宽应满足什么条件? 【答案与解析】一、选择题1.【答案】A【解析】根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选A.22.【答案】C.【解析】求出最大与最小的两数的积,以及余下两数的积,看所得积是否相等来鉴别它们是否成比例.3.【答案】 D4.【答案】 A 【解析】 由图可知,小鱼和大鱼的相似比为1:2,若将小鱼放大1倍,则小鱼和大鱼关于原点对称.5.【答案】C【解析】相似三角形对应边的比相等6.【答案】A 【解析】 相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.二、填空题7.【答案】.1:30 000 【解析】比例尺=图上距离︰实际距离.8.【答案】 【解析】由可得,故填.9.【答案】成比例;相等.10.【答案】【解析】提示:设11.【答案】80°,40°.12.【答案】 7.5.【解析】设另一个三角形周长是x. ∵一个三角形的三边长是4,5,6,∴这个三角形的周长为:4+5+6=15.∵与它相似的另一个三角形最短的一边长是2, ∴, 解得:x=7.5.∴另一个三角形的周长是7.5.三、解答题13.【解析】解:(1)∵a、b、c、d是成比例线段,∴a:b=c:d,∵a=3cm,b=2cm,c=6cm,∴d=4cm;3(2)∵线段c是线段a和b的比例中项,a=4cm,b=9cm.∴c2=ab=36,解得:c=±6,又∵线段是正数,∴c=6cm.14.【解析】要探究正方形是否与四边形相似,需知道四边形是否是正方形,若是正方形,则两正方形一定相似,若不是正方形,则不相似,因为所有的正方形都是相似的. 设正方形的边长为,由题意可知,同理由,可得同理45°,,四边形是正方形∴正方形 与正方形相似,即两正方形的相似比是.15.【解析】如图,为了方便分析可先画出草图,根据题意知两个矩形的长边之比应等于短边之比.设矩形的
上传时间:2023-04-30 页数:5
271人已阅读
(5星级)
图形的相似和比例线段--巩固练习(提高)【巩固练习】一.选择题1. 在比例尺为1︰1 000 000的地图上,相距3cm的两地,它们的实际距离为()A.3 km B.30 km C.300 km D.3 000 km 2.(2015•兰州一模)若3a=2b,则的值为()A. B. C.D. 3. 已知△ABC的三边长分别为6cm、7.5cm、9cm,△DEF的一边长为4cm,当△DEF的另两边的长是下列哪一组时,这两个三角形相似()A.2cm,3cm B.4cm,5cm C.5cm,6cm D.6cm,7cm4.△ABC与△A1B1C1相似且相似比为,△A1B1C1与△A2B2C2相似且相似比为,则△ABC与△A2B2C2的相似比为 () A. B. C.或 D.5.下列两个图形:① 两个等腰三角形;② 两个直角三角形;③ 两个正方形;④ 两个矩形;⑤ 两个菱形;⑥ 两个正五边形.其中一定相似的有()A. 2组B. 3组 C. 4组D. 5组6.一个钢筋三角架三边长分别是20cm,50cm,60cm,现要做一个与其相似的三角架,只有长30cm,50cm的两根钢筋,要求以其中一根为一边,从另一根截下两段(允许有余料)做为其他两边,则不同的截法有( )A.一种B.两种 C.三种D.四种二. 填空题7. (2014•宜昌模拟)在一张比例尺为1:5 000 000的地图上,甲、乙两地相距70毫米,此两地的实际距离为_________.8. △ABC的三条边长分别为、2、,△A′B′C′的两边长分别为1和,且△ABC与△A′B′C′相似,那么△A′B′C′的第三边长为____________9. 如图:梯形ADFE相似于梯形EFCB,若AD=3,BC=4,则110.已知若若:=___. 11.如图:AB:BC=________,AB:CD=_________,BC:DE=________,AC:CD=__________,CD:DE=________. 12. 用一个放大镜看一个四边形ABCD,若四边形的边长被放大为原来的10倍,下列结论①放大后的∠B是原来∠B的10倍;②两个四边形的对应边相等;③两个四边形的对应角相等,则正确的有.三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14. 如图,在矩形ABCD中,AB=2AD,线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH、MFGN,使矩形MFGN与矩形ABCD相似.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少? 15.(2014秋·滨江区期末)从一个矩形中剪去一个正方形,如图所示,若剩下的矩形与原矩形相似,求原矩形的长边与宽边比.2 【答案与解析】一、选择题1.【答案】B【解析】图上距离︰实际距离=1:1 000 000.2.【答案】A【解析】∵3a=2b, ∴,设a=2k,则b=3k,则故选A.3.【答案】C 【解析】 设△DEF的另两边的长分别为xcm,ycm,因为△ABC与△DEF相似,所以有下列几种情况: 当时,解得; 当时,解得; 当时,解得;所以选C.4.【答案】A 【解析】 相似比AB︰A1B1=,A1B1︰A2B2=,计算出AB︰A2B2.5.【答案】A【解析】只有两个正方形和正五边形相似.6.【答案】B二、填空题7.【答案】350千米.【解析】设甲、乙两地的实际距离为xmm,31:5000000=70:x,解得x=350000000.350000000mm=350千米.即甲乙两地的实际距离为350千米.8.【答案】 【解析】提示:△A′B′C′已知两边之比为1:,在△ABC中找出两边、,它们长度之比也为1︰,根据相似三角形对应边的对应关系,求出相似比.9.【答案】 .【解析】因为梯形ADFE相似于梯形EFCB,所以,即EF=,所以10.【答案】11.【答案】1:3;1:2;1:2;2:1;1:3.12.【答案】 ③三、解答题13.【解析】∵∴∴则分两种情况:(1),即, (2),即所以当,过点(-1,2)时,当,过点(-1,2)时,.414.【解析】∵矩形MFGN与矩形ABCD相似当时,S有最大值,为.15.【解析】根据矩形相似的性质找出相应的解析式求解.设原矩形的长为x,宽为y,则剩下矩形的长为y,宽为x-
上传时间:2023-04-30 页数:5
271人已阅读
(5星级)
相似三角形的判定--知识讲解(基础)【学习目标】1、了解相似三角形的概念, 掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用类比思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,∽读作相似于.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的. 4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:1【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形 B.所有的等腰三角形C.所有的等腰直角三角形 D.所有的一边和这边上的高相等的三角形【答案】C【解析】A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.【总结升华】根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等三条对应边的比相等.举一反三:【变式】(2014秋•江阴市期中)给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 (填序号).【答案】①②④⑤.类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.2【思路点拨】充分利用平行寻找等角,以确定相似三角形的个数.【答案与解析】∵ 四边形ABCD是平行四边形,∴ AB∥CD,AD∥BC,∴ △BEF∽△CDF,△BEF∽△AED.∴ △BEF∽△CDF∽△AED.∴ 当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比; 当△CDF∽△AED时,相似比.【总结升华】此题考查了相似三角形的判定(有两角对应相等的两三角形相似)与性质(相似三角形的对应边成比例).解题的关键是要仔细识图,灵活应用数形结合思想.举一反三:【变式】 如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.【答案】∵ AD、CE是△ABC的高,∴∠AEF=∠CDF=90°,又∵∠AFE=∠CFE,∴△AEF∽△CDF.3∴,即AF·FD=CF·FE. INCLUDEPICTURE"http://video.etiantian.com/security/82a94ffbfe97dce8b8e330929d6505ee/4c746ce0/ett20/resource/c97aa5ff8d5bc331c6502e939369177a/images/mb04_080317.gif" \* MERGEFORMATINET 3. (2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【思路点拨】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然
上传时间:2023-04-30 页数:6
271人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159
微信小程序
微信公众号
回到顶部