同位角、内错角、同旁内角 知识讲解【学习目标】1.了解三线八角模型特征;2.掌握同位角、内错角、同旁内角的概念,并能从图形中识别它们.【要点梳理】要点一、同位角、内错角、同旁内角的概念1. 三线八角模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为三线八角,如图1.要点诠释:⑴两条直线AB,CD与同一条直线EF相交.⑵三线八角中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在三线八角中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.要点诠释: (1)三线八角是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)三线八角中共有4对同位角,2对内错角,2对同旁内角. 403102要点二、同位角、内错角、同旁内角位置特征及形状特征1图1要点诠释:巧妙识别三线八角的两种方法:(1)巧记口诀来识别: 一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2. 【典型例题】类型一、三线八角模型1. (1)图3中,∠1、∠2由直线2被直线所截而成.(2)图4中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1) EF,CD; AB. (2)不是 .【解析】(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【总结升华】判断 三线八角的关键是找出哪两条直线是被截线,哪条直线是截线.类型二、同位角、内错角、同旁内角的辨别2.如图,(1)DE为截线,∠E与哪个角是同位角?(2)∠B与∠4是同旁内角,则截出这两个角的截线与被截线是哪些直线? (3)∠B和∠E是同位角吗?为什么?【答案与解析】解:(1)DE为截线,∠E与∠3是同位角;(2)截出这两个角的截线是直线BC,被截线是直线BF、DE;(3)不是,因为∠B与∠E的两边中任一边没有落在同一直线上,所以∠B和∠E不是同位角.【总结升华】确定角的关系的方法:(1)先找出截线,由截线与其它线相交得到的角有哪几个;(2)将这几个角抽出来,观察分析它们的位置关系;(3)再取其它的线为截线,再抽取与该截线相关的角来分析.举一反三:【变式】(2016春•邹城市校级期中)如图所示,下列说法错误的是()A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角3【答案】B解:从图上可以看出∠1和∠5不存在直接联系,而其它三个选项都符合各自角的定义,正确.3. (2014秋•太康县期末)如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.【答案与解析】解:内错角:∠1与∠4,∠3与∠5,∠2与∠6,∠4与∠8;同旁内角:∠3与∠6,∠2与∠5,∠2与∠4,∠4与∠5;同位角:∠3与∠7,∠2与∠8,∠4与∠6.【总结升华】要分析各对角是由哪两条直线被哪一条直线所截的,可以把复杂图形按题目要求分解成简单的图形后,结论便一目了然.举一反三:【变式】如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?【答案】解:同位角:∠5与∠1,∠4与∠3;内错角:∠2与∠3,∠4与∠1;同旁内角:∠4与∠2,∠5与∠3,∠5与∠4.4031024. 分别指出下列图中的同位角、内错角、同旁内角.【答案与解析】解: 同位角:∠B与∠ACD,∠B与∠ECD; 内错角:∠A与∠ACD,∠A与∠ACE; 同旁内角:∠B与∠ACB,∠A与∠B,∠A与∠ACB,∠B与∠BCE.【总结升华】在复杂图形中,分析同位角、内错角、同旁内角,应把图形分解成几个两条直4线与同一条直线相交的图形,并抽取交点处的角来分析.举一反三:【变式】请写出图中的同位角、内错角、同旁内角.【答案】解:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8是同位角;∠2与∠8,∠3与∠5是内错角;∠2与∠5,∠3与∠8是同旁内角.类型三、同位角、内错角、同旁内角大小之间的关系5. 如图直线DE、BC被直线AB所截,(1)∠1和∠2、∠1和∠3、∠1和∠4各是什么角?每组中两角的
上传时间:2023-04-30 页数:6
402人已阅读
(5星级)
2021年湖南省衡阳市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 8的相反数是()A. B. 8C. D. 【答案】A【解析】【分析】根据相反数的定义即可直接选择.【详解】8的相反数为-8.故选A.【点睛】本题考查求一个数的相反数.掌握相反数的定义是解答本题的关键.2. 2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为()A. B. C. D. 【答案】B【解析】【分析】科学记数法的表示形式为 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:98990000=9.899×107.故选:B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D. 【答案】D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4. 下列运算结果为的是()A. B. C. D. 【答案】C【解析】【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【详解】A选项,,不符合题意;B选项,,不符合题意;C选项,,符合题意;D选项,,不符合题意.故选:C.【点睛】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.5. 下列计算正确的是()A. B. C. D. 【答案】B【解析】【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.【详解】,故A选项错误,不符合题意;,故B选项正确,符合题意;和不是同类二次根式不能合并,故C选项错误,不符合题意;不能化简,故D选项错误,不符合题意;故选B.【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6. 为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是()A. 众数是82B. 中位数是84C. 方差是84D. 平均数是85【答案】C【解析】【分析】根据该组数据结合众数、中位数的定义和平均数、方差的计算公式,求出众数、中位数、平均数和方差即可选择.【详解】根据该组数据可知82出现了2次最多,故众数为82,选项A正确,不符合题意;根据中位数的定义可知该组数据的中位数为,选项B正确,不符合题意;根据平均数的计算公式可求出,选项D正确,不符合题意;根据方差的计算公式可求出,选项C错误,符合题意.故选C.【点睛】本题考查求众数、中位数、平均数和方差.掌握众数、中位数的定义,平均数、方差的计算公式是解答本题的关键.7. 如图是由6个相同的正方体堆成的物体,它的左视图是().A. B. C. D. 【答案】A【解析】【分析】结合题意,根据视图的性质分析,即可得到答案.【详解】由6个相同的正方体堆成的物体,它的左视图如下:故选:A【点睛】本题考查了视图的知识;解题的关键是熟练掌握左视图的性质,从而完成求解.8. 如图是某商场营业大厅自动扶梯的示意图.自动扶梯的倾斜角为,大厅两层之间的距离为6米,则自动扶梯的长约为()().A. 7.5米B. 8米C. 9米D. 10米【答案】D【解析】【分析】结合题意,根据三角函数的性质计算,即可得到答案.【详解】根据题意,得:∵米∴米故选:D.【点睛】本题考查了三角函数的知识;解题的关键是熟练掌握三角函数的性质,从而完成求解.9. 下列命题是真命题的是().A. 正六边形的外角和大于正五边形的外角和B. 正六边形的每一个内角为C. 有一个角是的三角形是等边三角形D. 对角线相等的四边形是矩形【答案】B【解析】【分析】根据多边形外角和、正多边形内角和、等边三角形、矩形的性质,对各个选项
上传时间:2023-05-08 页数:33
401人已阅读
(5星级)
江苏省南京市2021中考数学试卷注意事项1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,首在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用像皮擦干净后,再选涂其他答案,答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 截至2021年6月8日,31个省(自治区,直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过800000000次,用科学记数法表示800000000是()A. B. C. D. 【答案】A【解析】【分析】先确定原数的整数位数,再将原数的整数位数减去1得到10的指数,最后按照科学记数法的书写规则确定即可.【详解】解:800000000=;故选:A.【点睛】本题考查了科学记数法,解决本题的关键是牢记科学记数法的表示方法,本题是基础题,考查了学生对书本概念的理解与掌握.2. 计算的结果是()A. B. C. D. 【答案】B【解析】【分析】直接利用幂的乘方和同底数幂的乘法法则进行计算即可.【详解】解:原式=;故选:B.【点睛】本题考查了幂的乘方和同底数幂的运算法则,其中涉及到了负整数指数幂等知识,解决本题的关键是牢记相应法则,并能够按照正确的运算顺序进行计算即可,本题较为基础,考查了学生的基本功.3. 下列长度的三条线段与长度为5的线段能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2【答案】D【解析】【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.【点睛】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.4. 北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:00【答案】C【解析】【分析】根据北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,逐项判断出莫斯科时间,即可求解.【详解】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故选:C【点睛】本题考查了有理数减法的应用,根据北京时间推断出莫斯科时间是解题关键.5. 一般地,如果(n为正整数,且),那么x叫做a的n次方根,下列结论中正确的是( )A. 16的4次方根是2B. 32的5次方根是C. 当n为奇数时,2的n次方根随n的增大而减小D. 当n为奇数时,2的n次方根随n的增大而增大【答案】C【解析】【分析】根据题意n次方根,列举出选项中的n次方根,然后逐项分析即可得出答案.【详解】A. ,16的4次方根是,故不符合题意;B.,,32的5次方根是2,故不符合题意;C.设则且 当n为奇数时,2的n次方根随n的增大而减小,故符合题意;D.由的判断可得:错误,故不符合题意.故选.【点睛】本题考查了新概念问题,n次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x是否为负数,通过简单举例验证选项是解题关键.6. 如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A. B. C. D. 【答案】D【解析】【分析】因
上传时间:2023-05-08 页数:30
401人已阅读
(5星级)
中考总复习:图形的变换--巩固练习(提高)【巩固练习】一、选择题1.有下列四个说法,其中正确说法的个数是()①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A. 1个B.2个 C. 3个D.4个2.在旋转过程中,确定一个三角形旋转的位置所需的条件是(). ①三角形原来的位置;②旋转中心;③三角形的形状;④旋转角.A.①②④ B.①②③ C.②③④D.①③④3.(2017•大连模拟)如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A. B.1 C. D.4.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数为().A、30° B、60° C、120° D、180°5.如图,把矩形纸条ABCD沿EFGH,同时折叠,BC,两点恰好落在AD边的P点处,若90FPH∠,8PF,6PH,则矩形ABCD的边BC长为().A.20B.22C.24D.30 第4题第5题6.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下图的一座小别墅,则图中阴影部分的面积是().A.2B.4C.8D.101二、填空题7.(2017·郑州一模)如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连结AD,将△ADC沿AD折叠,点C落在点C,连结CD交AB于点E,连结BC.当△BCD是直角三角形时,DE的长为 .8.在RtABC中,∠A<∠B,CM是斜边AB上的中线,将ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么∠A等于度. 第7题第8题9.在RtABC△中,903BACABM°,,为边BC上的点,连结AM(如图所示).如果将ABM△沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是 .10.如图,在ABC中,MN//AC,直线MN将ABC分割成面积相等的两部分,将BMN沿直线MN翻折,点B恰好落在点E处,联结AE,若AE//CN,则AE:NC= . 第9题第10题11.(2016•闸北区一模)如图,将一张矩形纸片ABCD沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G,则CG:GD的值为 .212.如图,在计算机屏幕上有一个矩形画刷ABCD,它的边AB=l,.把ABCD以点B为中心按顺时针方向旋转60°,则被这个画刷着色的面积为________.三、解答题13. 如图(1)所示,一张三角形纸片ABC,6,8,90BCACACB.沿斜边AB的中线CD把这线纸片剪成11DAC和22DBC两个三角形如图(2)所示.将纸片11DAC沿直线BD2(AB)方向平移(点BDDA,,,21始终在同一条直线上),当点1D与点B重合时,停止平移,在平移的过程中,11DC与2BC交于点E,1AC与222,BCDC分别交于点F,P.(1)当11DAC平移到如图(3)所示的位置时,猜想图中ED1与FD2的数量关系,并证明你的猜想.(2)设平移距离12,DD为x,11DAC与22DBC重叠部分的面积为y,请写出y与x的函数关系式,以及自变量x的取值范围;(3)对于(2)中的结论是否存在这样的x,使得重叠部分面积等于原ABC纸片面积的41?若存在,请求出x的值;若不存在,请说明理由.3 14.(2015•河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360
上传时间:2023-04-30 页数:12
401人已阅读
(5星级)
中考冲刺:数形结合问题(基础)一、选择题1.(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个2. 从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲)然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A 、B、C、 D、 二、 填空题3. 实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的序号为____________.①b+c>0 ②a+b>a+c ③ac<bc ④ab>ac4.(2016•通辽)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③4b+c<01④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确的结论是(填写代表正确结论的序号)______. 三、解答题5. 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么2个小时时血液中含药最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.当成人按规定剂量服药后.(1)分别求出x≤2和x≥2时y与x的函数解析式;(2)如果每毫升血液中含量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间有多长?6.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形. (1)你认为图2中的阴影部分的正方形的边长等于 _____;(2)请用两种不同的方法求图2中阴影部分的面积.① ______②_______;(3)观察图2你能写出下列三个代数式之间的等量关系吗?(4)运用你所得到的公式,计算若mn=-2,m-n=4,求(m+n)2的值.(5)用完全平方公式和非负数的性质求代数式x2+2x+y2-4y+7的最小值.7. 为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的便民卡与如意卡在某市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图所示:(1)分别求出通话费y1,y2与通话时间x之间的函数关系式;2(2)请帮用户计算,在一个月内使用哪一种卡便宜. 8. (长宁区二模)如图,一次函数y=ax﹣1(a≠0)的图象与反比例函数y=(k≠0)的图象相交于A、B两点且点A的坐标为( 2,1),点B的坐标(﹣1,n).(1)分别求两个函数的解析式;(2)求△AOB的面积. 9. 请同学们仔细阅读如图所示的计算机程序框架图,回答下列问题:(1)如果输入值为2,那么输出值是多少?(2)若要使输入的x的值只经过一次运行就能输出结果,求x的取值范围;(3)若要使开始输入的x的值经过两次运行才能输出结果,那么x的取值范围又是多少? 10. 观察如图所包含规律(图中三角形均是直角三角形,且一条直角边始终为1,四边形均为正方形.S1,S2,S3,…Sn依次表示正方形的面积,每个正方形边长与它左边相邻3的直角三角形斜边相等),再回答下列问题.(1)填表:直角边A1B1A2B2A3B3A4B4…AnBn长度1 … (2)当s1+s2+s3+s4+…+sn=465时,求n. 11. 某报社为了了解读者对该报社一种报纸四个版面的认可情况,对读者做了一次问卷凋查,要求读者选出自己最喜欢的一个版面,并将调查结果绘制成如下的统计图,请你根据图中提供的信息解答下列问题. (1)在这次活动中一共调查了多少读者? (2)在扇形统计图中,计算第一版所在扇形的圆心角度数; (3)请你求出喜欢第四版的人数,并将条形统计图补充完整. 答案与解析【答案与解析】一、选择题1.【答案】C; 【解析】∵二次函数y=ax2+bx+c图象经过原点,
上传时间:2023-04-30 页数:8
401人已阅读
(5星级)
中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M=kt+b,由图象上两点的坐标(2,28000)、(6,80000),可求得是k=13000,b=2000.1所以线段l的函数关系式为:M=13000t+2000(1≤t≤8).由MtS建筑面积用地面积知,当t=1时,SM用地面积建筑面积.把t=1代入M=13000t+2000中,可得 M=15000. 即开发该小区的用地面积是15 000 m2.(2)根据图象特征可设抛物线段c的函数关系式为Q=a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a.所以219(4)100100Qt2121(18)100254ttt.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A地的路程s与行驶时间t之间的函数关系式(任写一个).(3)在什么时间段内乙比甲离A地更近?【答案】解:(1)50202.5v甲(km/h),60302v乙(km/h).(2)5020st甲或6030st乙(答对一个即可);(3)1<t<2.5.2.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y(千2米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【思路点拨】(1)由速度=路程÷时间,可得出甲行驶的速度;(2)设直线AB所对应的函数表达式为y=kx+b,将A、B点的坐标代入解析式可得出关于k、b的二元一次方程组,解出方程组即可得出结论;(3)找出各段线段所对应的函数表达式,根据图象做差可得出关于x的一元一次方程,解方程即可得出结论.【答案与解析】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1≤x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3
上传时间:2023-04-30 页数:8
401人已阅读
(5星级)
中心对称与中心对称图形--巩固练习【巩固练习】一. 选择题1. 选出下列图形中的中心对称图形( ) A.①② B.①③ C.②③ D.③④2. (2015春•高密市期末)下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合 3. 在线段、等腰梯形、平行四边形、矩形、菱形、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A.3个 B.4个 C.5个 D.6个4.下列说法正确的是( )A.两个会重合的三角形一定成轴对称B.两个会重合的三角形一定成中心对称C.成轴对称的两个图形中,对称线段平行且相等D.成中心对称的两个图形中,对称线段平行(或在同一条直线上)且相等5.如图所示,已知△ABC与△CDA关于点O对称,过点O任作直线EF分别交AD、BC于点E、F,下面的结论:(1)点E和点F;点B和点D是关于中心O的对称点;(2)直线BD必经过点O;(3)四边形ABCD是中心对称图形;(4)四边形DEOC与四边形BFOA的面积必相等;(5)△AOE与△COF成中心对称,其中正确的个数为( ) A. 1个 B. 2个 C. 3个 D. 5个6.在下列四种图形变换中,本题图案不包含的变换是()①中心对称 ②旋转 ③轴对称 ④平移 A.①②B.②③ C.③④ D.①④1二. 填空题7. 如图,若将△ABC绕点O顺时针旋转180°后得到△,则A点的对应点点的坐标是________. 8. 如图,△A1B1C1与△ABC关于y轴对称,△A2B2C2与△A1B1C1关于x轴对称,则△A2B2C2与△ABC的关系是__________.9.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.10.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.11.如图所示,△ABC中,∠BAC=120°,∠DAE=60°,AB=AC,△AEC绕点A旋转到△AFB的位置;∠FAD=__________,∠FBD=__________. 12. (2015春•无锡校级月考)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2015的坐标为.2三. 综合题13.如图,△DEF是由△ABC绕点O顺时针旋转180°后得到的图形.(1)请指出图中所有相等的线段;(2)写出图中所有相等的角;(3)图中哪些三角形可以看成是关于点O成中心对称的? 14. (2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.15. 如图,为边的是等边三角形,求AP的最大、最小值. 3【答案与解析】一、选择题1.【答案】B2.【答案】B【解析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.3.【答案】B【解析】既是轴对称图形,又是中心对称图形的图形有线段、矩形、菱形
上传时间:2023-04-30 页数:6
401人已阅读
(5星级)
二次函数y=a(x-h)2+k(a≠0)的图象与性质—知识讲解(提高)【学习目标】1.会用描点法画出二次函数2()yaxhk(a、h、k常数,a≠0)的图象.掌握抛物线2()yaxhk与2yax图象之间的关系;2.熟练掌握函数2()yaxhk的有关性质,并能用函数2()yaxhk的性质解决一些实际问题;3.经历探索2()yaxhk的图象及性质的过程,体验2()yaxhk与2yax、2yaxk、2()yaxh之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.【要点梳理】要点一、函数与函数的图象与性质1.函数的图象与性质 2.函数的图象与性质要点诠释:二次函数2()+(0yaxhka≠)的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移1.平移步骤:⑴ 将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;a的符号开口方向顶点坐标对称轴性质0a向上0h,x=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值0.0a向下0h,x=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值0.a的符号开口方向顶点坐标对称轴性质0a向上hk,x=hxh时,y随x的增大而增大;xh时,y随x的增大而减小;xh时,y有最小值k.0a向下hk,x=hxh时,y随x的增大而减小;xh时,y随x的增大而增大;xh时,y有最大值k.1⑵ 保持抛物线2yax的形状不变,将其顶点平移到hk,处,具体平移方法如下: 2.平移规律:在原有函数的基础上h值正右移,负左移;k值正上移,负下移.概括成八个字左加右减,上加下减.要点诠释:⑴cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)⑵cbxaxy2沿x轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)【典型例题】类型一、二次函数图象及性质1. 已知2()yaxhk是由抛物线212yx向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a、h、k的值;(2)在同一坐标系中,画出2()yaxhk与212yx的图象;(3)观察2()yaxhk的图象,当x取何值时,y随x的增大而增大;当x取何值时,y随x增大而减小,并求出函数的最值;(4)观察2()yaxhk的图象,你能说出对于一切x的值,函数y的取值范围吗?【答案与解析】 (1)∵抛物线212yx向上平移2个单位长度,2再向右平移1个单位长度得到的抛物线是21(1)22yx,∴12a,,2k.(2)函数21(1)22yx与212yx的图象如图所示.(3)观察21(1)22yx的图象知,当1x时,y随x的增大而增大;当1x时,y随x增大而减小,当x=1时,函数y有最大值是2.(4)由图象知,对于一切x的值,总有函数值y≤2.【总结升华】先根据平移的性质求出抛物线212yx平移后的抛物线的解析式,再对比2()yaxhk得到a、h、k的值,然后画出图象,由图象回答问题.举一反三:391919 练习3】【变式】把二次函数2()yaxhk的图象先向左平移2个单位,再向上平移4个单位,得到二次函数21(1)12yx的图象.(1)试确定a、h、k的值;(2)指出二次函数2()yaxhk的开口方向,对称轴和顶点坐标,分析函数的增减性.【答案】(1)1,1,52ahk.(2)开口向下,对称轴x=1, 顶点坐标为(1,-5), 当x≥1时,y随x的增大而减小;当x<1时,y随x的增大而增大.2.已知函数22113513xxyxx≤>,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1C.2D.33【答案】D;【解析】函数22113513xxyxx≤> 的图象如图:,根据图象知道当y=3时,对应成立的x恰好有三个,∴k=3.故选D.【总结升华】此题主要考查了利用二次函数的图象解决交点问题,解题的关键是把解方程的问题转换为根据函数图象找交点的问题.类型二、二次函数性质的综合应用3.(2016•杭州校级二模)二次函数y=(x1﹣)2+1,当2≤y<5时,相应x的取值范围为
上传时间:2023-04-30 页数:5
401人已阅读
(5星级)
反比例函数(基础)【学习目标】1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.4. 会解决一次函数和反比例函数有关的问题.【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即,或表示为,其中是不等于零的常数.一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.要点诠释:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.(2) ()可以写成()的形式,自变量的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为: ();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值;1(4)把求得的值代回所设的函数关系式 中.要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(为常数,) 中,由于,所以两个分支都无限接近但永远不能达到轴和轴.2、画反比例函数的图象的基本步骤:(1)列表:自变量的取值应以O为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)描点:描出一侧的点后,另一侧可根据中心对称去描点;(3)连线:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由的符号决定的:当时,两支曲线分别位于第一、三象限内,当时,两支曲线分别位于第二、四象限内. 3、反比例函数的性质(1)如图1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限内,值随值的增大而减小; (2)如图2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限内,值随值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.要点四:反比例函数()中的比例系数的几何意义2过双曲线() 上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线() 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为. 要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典型例题】类型一、反比例函数的定义1、(2014春•惠山区校级期中)下列函数:①y=2x,②y=,③y=x1﹣,④y=.其中,是反比例函数的有().A.0个B. 1个C. 2个 D. 3个【答案】C;【解析】解:①y是x正比例函数;②y是x反比例函数;③y是x反比例函数;④y是x+1的反比例函数.故选:C.【总结升华】本题考查了反比例函数的定义,重点是将一般转化为y=kx﹣1(k≠0)的形式.类型二、确定反比例函数的解析式2、(2016春•大庆期末)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.【思路点拨】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【答案】﹣2.【解析】3解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=.当x=6时,y=﹣2,故答案为:﹣2.【总结升华】本题考查了反比例函数的定义,利用待定系数法求函数解析式是解题关键.举一反三:【变式】已知与成反比,且当时,,则当时,值为多少?【答案
上传时间:2023-04-30 页数:7
401人已阅读
(5星级)
与三角形有关的线段(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有( )A.1个B.2个C.3个D.4个2.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个3.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③4.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是()A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高5.(2015春•南长区期中)有4根小木棒,长度分别为3cm、5cm、7cm、9cm任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为() A.2个 B.3个C.4个 D.5个6.给出下列图形:其中具有稳定性的是( )A.①B.③C.②③D.②③④7.如图所示为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为214平方公分,则此方格纸的面积为多少平方公分? ( )A.11B.12C.13D.1418.王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再钉上几根木条?( )A.0根B.1根C.2根D.3根二、填空题9.(2014春•渝北区期末)对面积为1的△ABC进行以下操作:分别延长AB、BC、CA至点A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1(如图所示),记其面积为S1.现再分别延长A1B1、B1C1、C1A1至点A2、B2、C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2、B2、C2,得到△A2B2C2,记其面积为S2,则S2=.10.三角形的两边长分别为5 cm和12 cm,第三边与前两边中的一边相等,则三角形的周长为________.11.(2016春•丹阳市校级期中)如图,AD⊥BC于D,那么图中以AD为高的三角形有 个.12.在数学活动中,小明为了求23411112222…12n的值(结果用n表示),设计了如图所示的几何图形.请你利用这个几何图形求23411112222…12n=________.13.请你观察下图的变化过程,说明四边形的四条边一定时,其面积________确定.(填2能或不能)14.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题15.草原上有4口油井,位于四边形ABCD的四个顶点上,如图所示,如果现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离之和HA+HB+HC+HD为最小,说明理由.16.取一张正方形纸片,把它裁成两个等腰直角三角形,取出其中一张如图①,再沿着直角边上的中线AD按图②所示折叠,则AB与DC相交于点G.试问:△AGC和△BGD的面积哪个大?为什么?17. 已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.18. (2014春•西城区期末)阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:BD=PM+PN.他发现,连接AP,有S△ABC=S△ABP+S△ACP,即AC•BD=AB•PM+AC•PN.由AB=AC,可得BD=PM+PN.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:BD=PNPM﹣.3请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵S△ABC=S△APC﹣,∴AC•BD=AC• ﹣AB•.∵AB=AC,∴BD=PNPM﹣.(2)参考该同学思考问题的方法,解决下列问题:在△ABC
上传时间:2023-04-30 页数:7
401人已阅读
(5星级)
2021年昆明市初中学业水平考试英语试题卷(全卷四个部分,共8页。满分120分,考试用时120分钟)注意事项:1. 本卷为试题卷。考生必须在答题卡上解题作答。答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。2. 考试结束后,请将试题卷和答題卡一并交回。第一部分 听力(共四节,满分30分)第一节 听句子,选出与所听句子内容相符的图画。听音前你有10秒钟的读题时间,注意听两遍。(共5小题,每小题1分,满分5分)1. A. B. C. 2. A. B. C. 3. A. B. C. 4. A. B. C. 5. A. B. C. 第二节 根据所听到的句子,选出最恰当的应答语。听音前你有10秒钟的读题时间,注意听两遍。(共5小题,每小题1分,满分5分)6. A. Piano lessons. B. The chess club. C. A welcome party. 7. A. In September. B. Every morning. C. For five months. 8. A. Yes, he does. B. No, he isnt. C. No, he didnt. 9. A. Its not good. B. What a pity!C. Thank you. 10. A. All right. B. Here you are. C. It doesnt matter. 第三节 听对话及何题,选择最佳答案。听音前你有10秒钟的读题时间,注意听两遍。(共5小题,每小題2分,满分10分)11. A. Once a week. B. Twice a week. C. Three times a week. 12. A. The service is the best. B. The restaurant is clean. C. The food tastes good. 13. A. 6:50 p. m. B. 7:15 p. m. C. 7:40 p. m. 14. A. No, he doesntB. On weekdays. C. On weekends. 15. A. Yu Gong should move the mountains. B. The Story of Yu Gong is not educational. C. Yu Gong can try another way to solve the problem. 第四节 听短文,根据短文内容回答问题。听音前你有15秒钟的读题时间,注意听三遍。(共5小题,每小题2分,满分10分)16. Fairy penguins are the ____________ penguins in the world. A. fattestB. largestC. smallest17. How tall are fairy penguins? A. About 3 centimeters tall. B. About 13 centimeters tall. C. About 30 centimeters tall. 18. Where do fairy penguins lay eggs?A. In the sea. B. On land.C. In a hole under the sea. 19. Fairy penguins are in danger. One of the reasons is that _____________. A. they often get hurtB. there is no enough foodC. they are losing their homes because of pollution20. According to the passage, which of the following is TRUE?A. Fairy penguins arc good at swimming and flying. B. Its the father and mother penguins task to sit on the e
上传时间:2023-05-09 页数:18
400人已阅读
(5星级)
遂宁市2021年初中毕业暨高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确.2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1. -2021的绝对值是()A. -2021B. 2021C. D. 【答案】B【解析】【分析】一个数的数绝对值是非负数,负数的绝对值是它的相反数.【详解】-2021的绝对值是2021; 故选:B. 【点睛】本题考查了绝对值的定义,以及求绝对值,掌握一个负数的绝对值是它的相反数,是解题的关键.2. 下列计算中,正确的是()A. B. C. D. 【答案】D【解析】【分析】分别根据完全平方公式,同底数幂相除,单项式乘以多项式,合并同类项等知识点化简,然后判断即可.【详解】解:A. ,故选项错误;B. ,故选项错误;C. ,故选项错误;D. ,故选项正确;故选:D.【点睛】本题考查了完全平方公式,同底数幂相除,单项式乘以多项式,合并同类项等知识点,熟悉相关知识点是解题的关键.3. 如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是( )A. B. C. D. 【答案】D【解析】【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人,将14.1亿用科学记数法表示为( )A. 14.1×108B. 1.41×108C. 1.41×109D. 0.141×1010【答案】C【解析】【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n≥的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:14.1亿,故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.5. 如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为( )A. 12cm2B. 9cm2C. 6cm2D. 3cm2【答案】B【解析】【分析】由三角形的中位线定理可得DE=BC,DE∥BC,可证△ADE∽△ABC,利用相似三角形的性质,即可求解.【详解】解:∵点D,E分别是边AB,AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵S△ADE=3,∴S△ABC=12,∴四边形BDEC的面积=12-3=9(cm2),故选:B.【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键.6. 下列说法正确的是()A. 角平分线上的点到角两边的距离相等B. 平行四边形既是轴对称图形,又是中心对称图形C. 在代数式,,,,,中,,,是分式D. 若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4【答案】A【解析】【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式,,,,,中,,是分式,故选项错误;D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A.【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.7. 不等式组的解集在数轴上表示正确的是()A. B. C. D. 【答案】C【解析】【分析】先分别求出两个不等式的解,得出不等式组的解,再在数轴上的表示出解集即可.【详解】解: 解不等式①得,解不等式②得,不等式组的解集为,在数轴上表示为,故选:C.【点睛】本题考查了一元一次不等式组的解法和解集的表示,解题关键是熟练运用解不等式组的方法求解,准确在数轴上表示解集.8. 如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE沿DE翻折,点C 恰好落在AB边上的F处,则CE的长是( ) A. 1B.
上传时间:2023-05-08 页数:31
400人已阅读
(5星级)
6.3 等可能事件的概率一、填空题1.任意掷一枚均匀的小正方体(立方体的每个面上,分别标有数字1、2、3、4、5、6),上面的数字为奇数的概率是_____.2.一副扑克牌任意抽取一张,抽到大王的概率是_____,抽到大王或小王的概率是_____.3.掷一枚硬币,正面朝上的概率是_____.4.现有三个布袋,里面放着已经搅匀了的小球,具体的数目如下表所示:袋编号123布袋中球的数量和种类1个红球2个白球3个黑球3个白球3个黑球1个红球1个白球4个黑球①从第一个口袋中任取一球是白球的概率_____.②从第二个口袋中任取一球是黑球的概率_____.③从第三个口袋中任取一球是红球的概率_____.④现将三个口袋中的小球放在一个口袋中,搅匀从中任取一球,是黑球的概率_____.5.一条线段上有A、B两点,B在A点右边的概率是_____.6.从1、2、3、4、5、6、7七个数字中任取一个数字是偶数的概率是_____.7.10个乒乓球中有8个一等品,2个二等品,从中任取一个是二等品的概率是_____.8.将一枚硬币连掷两次,出现两个正面的概率是_____.9.从一副扑克牌中任取一张是红桃的概率是_____.10.有100张已编号的卡片(从1号到100号)从中任取一张①卡片号是5的倍数的概率_____;②卡片号既是偶数又是3的倍数的概率是_____.11.3张飞机票,2张火车票,分别放在五个相同的盒子中,小亮从中任取一个盒子决定出游方式,那么他乘飞机出游的概率是_____.二、选择题12.某团支部共7名同学,其中男生3人,女生4人,今从中选一名团员是男生的概率为 ()A.B.C.D.无法确定13.小明、小亮、小冬三名男生结伴出游投宿一家旅馆,该旅馆只有一人间和二人间,则小明住单人间的概率为()A.B.C.D.无法确定14.100件产品中有97件正品,3件次品,今从中任取一件得到次品的概率是()A.B.C.D.15.初一·二班在小丽和小惠两人中选一人参加女子百米比赛,已知小丽夺冠的概率为70%,小惠夺冠的概率为30%,推荐方法正确的是()A.应让小丽去参加比赛B.应让小惠去参加比赛C.因为二人都有可能夺冠,因此应采用抓阄的方法决定谁去比赛D.因为二人都没有绝对把握夺冠,谁去比赛都一样三、解答题16.准备两个筹码,一个两面都画上×,另一个一面画上×号一面画上○,小明和小亮各持一个筹码,抛掷手中的筹码.规定:抛出一对×,小明得1分,抛出一个×和一个○,小亮得1分.重复上面的试验,统计小明获胜的概率是多少?17.准备三张大小一样印有不同图案的纸片(如三个人的照片)把每张纸片都对折,剪成大小一样的两张,将这六张小纸片有图案的一面朝下,然后混合,随便抽取其中的两张,重复上面的试验,统计正好拼成原图的概率是多少?参考答案一、1.2.3.4.①②③④5.6.7.8.9.10.11.二、12.B13.A14.B15.A三、16.略17.略
上传时间:2023-04-30 页数:3
400人已阅读
(5星级)
中考总复习:几何初步及三角形—知识讲解(提高)【考纲要求】1.了解直线、射线、线段的概念和性质以及表示方法,掌握三者之间的区别和联系,会解决与线段有关的实际问题;2.了解角的概念和表示方法,会把角进行分类以及进行角的度量和计算;3.掌握相交线、平行线的定义,理解所形成的各种角的特点、性质和判定;4.了解命题的定义、结构、表达形式和分类,会简单的证明有关命题;5.了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性. 【知识网络】【考点梳理】考点一、直线、射线和线段1.直线1代数中学习的数轴和一张纸对折后的折痕等都是直线,直线可以向两方无限延伸.(直线的概念是一个描述性的定义,便于理解直线的意义).要点诠释:1).直线的两种表示方法:(1)用表示直线上的任意两点的大写字母来表示这条直线,如直线AB,其中A、B是表示直线上两点的字母;(2)用一个小写字母表示直线,如直线a.2).直线和点的两种位置关系(1)点在直线上(或说直线经过某点);(2)点在直线外(或说直线不经过某点).3).直线的性质: 过两点有且只有一条直线(即两点确定一条直线).2.射线直线上一点和它一旁的部分叫做射线.射线只向一方无限延伸.要点诠释:(1)用表示射线的端点和射线上任意一点的大写字母来表示这条射线,如射线OA,其中O是端点,A是射线上一点;(2)用一个小写字母表示射线,如射线a.3.线段直线上两点和它们之间的部分叫做线段,两个点叫做线段的端点.要点诠释:1).线段的表示方法:(1)用表示两个端点的大写字母表示,如线段AB,A、B是表示端点的字母;(2)用一个小写字母表示,如线段a.2).线段的性质:所有连接两点的线中,线段最短(即两点之间,线段最短).3).线段的中点:线段上一点把线段分成相等的两条线段,这个点叫做线段的中点.4).两点的距离:连接两点间的线段的长度,叫做两点的距离.考点二、角1.角的概念:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,两条射线分别叫做角的边.(2)定义二:一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角.射线旋转时经过的平面部分是角的内部,射线的端点是角的顶点,射线旋转的初始位置和终止位置分别是角的两条边.要点诠释:1).角的表示方法:(1)用三个大写字母来表示,注意将顶点字母写在中间,如∠AOB;(2)用一个大写字母来表示,注意顶点处只有一个角用此法,如∠A;(3)用一个数字或希腊字母来表示,如∠1,∠.2).角的分类:(1)按大小分类: 锐角-小于直角的角(0°<<90°); 直角-平角的一半或90°的角(=90°); 钝角-大于直角而小于平角的角(90°<<180°).(2)平角:一条射线绕着端点旋转,当终止位置与起始位置成一条直线时,所成的角叫做平角,平角等于180°.(3)周角:一条射线绕着端点旋转,当终止位置又回到起始位置时,所成的角叫做周角,周角等于 360°.(4)互为余角:如果两个角的和是一个直角(90°),那么这两个角叫做互为余角.(5)互为补角:如果两个角的和是一个平角(180°),那么这两个角叫做互为补角.3).角的度量:(1)度量单位:度、分、秒;(2)角度单位间的换算:1°=60′,1′=60″(即:1度=60分,1分=60秒);(3)1平角=180°,1周角=360°,1直角=90°.4).角的性质:同角或等角的余角相等,同角或等角的补角相等.2.角的平分线:如果一条射线把一个角分成两个相等的角,那么这条射线叫做这个角的平分线.考点三、相交线1.对顶角(1)定义:如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那2么这两个角叫对顶角.(2)性质:对顶角相等.2.邻补角(1)定义:有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.(2)性质:邻补角互补.3.垂线 (1)定义:当两条直线相交所得的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,它们的交点叫做垂足.垂直用符号⊥来表示.要点诠释: ①过一点有且只有一条直线与已知直线垂直. ②连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短. (2)点到直线的距离定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.4.同位角、内错角、同旁内角(1)基本概念:两条直线(如a、b)被第三条直线(如c)所截,构成八个角,简称三线八角,如图所示: ∠1和∠8、∠2和∠7、∠3
上传时间:2023-04-30 页数:9
400人已阅读
(5星级)
中考总复习:特殊三角形—知识讲解(提高)【考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质;(2)两底角相等(等边对等角);(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4)等边三角形的各角都相等,且都等于60°. 要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形. 要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2.性质: (1)直角三角形中两锐角互余; (2)直角三角形中,30°锐角所对的直角边等于斜边的一半; (3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°; (4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方; (5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形; (6)直角三角形中,斜边上的中线等于斜边的一半.要点诠释:1(1)直角三角形中,SRt△ABC=ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)圆内接三角形,当一条边为直径时,该三角形是直角三角形.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.(2014秋•自贡期末)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当a为多少度时,△AOD是等腰三角形?【思路点拨】(1)首先根据已知条件可以证明△BOCADC≌△,然后利用全等三角形的性质可以求出∠ADO的度数,由此即可判定△AOD的形状;(2)利用(1)和已知条件及等腰三角形的性质即可求解.【答案与解析】解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=OCD=60°∠,∴∠BCO=ACD∠,在△BOC与△ADC中,∵,∴△BOCADC≌△,∴∠BOC=ADC∠,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°60°=90°﹣,∴△ADO是直角三角形;(2)∵设∠CBO=CAD=a∠,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°110°=70°﹣,c+d=60°,a+d=50°DAO=50°∠,∴bd=10°﹣,∴(60°a﹣)﹣d=10°,2∴a+d=50°,即∠CAO=50°,①要使AO=AD,需∠AOD=ADO∠,∴190°α=α60°﹣﹣,∴α=125°;②要使OA=OD,需∠OAD=ADO∠,∴α60°=50°﹣,∴α=110°;③要使OD=AD,需∠OAD=AOD∠,∴190°α=50°﹣,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.【总结升华】此题主要考查了等边三角形的性质与判定,以及等腰三角形的性质和旋转的性质等知识,根据旋转前后图形不变是解决问题的关键.举一反三: 【变式】把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________. 【答案】.2.已知: 如图, 菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【思路点拨】菱形的定义和性质.【答案与解析】(1)∵四边形ABCD是菱形, ∴AB=AD,∠B=∠D ,又∵BE=DF,∴≌ .3∴AE=AF. (2)连接AC, ∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD, ∵AB=BC=CD=DA , ∴△ABC和△ACD都是等
上传时间:2023-04-30 页数:9
400人已阅读
(5星级)
用函数观点看一元二次方程—知识讲解(提高)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;2.会求抛物线与x轴交点的坐标,掌握二次函数与不等式之间的联系;3.经历探索验证二次函数与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x轴的交点情况决定一元二次方程根的情况求二次函数(a≠0)的图象与x轴的交点坐标,就是令y=0,求中x的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x轴的交点的个数,它们的关系如下表:判别式二次函数一元二次方程图象与x轴的交点坐标根的情况△>0抛物线与x轴交于,两点,且,此时称抛物线与x轴相交一元二次方程有两个不相等的实数根△=0抛物线与x轴交切于这一点,此时称抛物线与x轴相切一元二次方程有两个相等的实数根△<0抛物线与x轴无交点,此时称抛物线与x轴相离一元二次方程在实数范围内无解(或称无实数根)1 要点诠释: 二次函数图象与x轴的交点的个数由的值来确定的. (1)当二次函数的图象与x轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线(a≠0)与y轴交点和二次函数与一次函数的交点问题.抛物线(a≠0)与y轴的交点是(0,c).抛物线(a≠0)与一次函数(k≠0)的交点个数由方程组的解的个数决定. 当方程组有两组不同的解时两函数图象有两个交点; 当方程组有两组相同的解时两函数图象只有一个交点; 当方程组无解时两函数图象没有交点. 总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题.要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题.要点二、利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y值.4.确定一元二次方程的近似根.在(3)中最接近0的y值所对应的x值即是一元二次方的近似根.要点诠释:求一元二次方程的近似解的方法(图象法):2 (1)直接作出函数的图象,则图象与x轴交点的横坐标就是方程的根; (2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x轴的两个交点之间的距离公式当△>0时,设抛物线与x轴的两个交点为A(,0),B(,0),则、是一元二次方程的两个根.由根与系数的关系得,.∴即(△>0).要点四、抛物线与不等式的关系二次函数(a≠0)与一元二次不等式(a≠0)及(a≠0)之间的关系如下:判别式抛物线与x轴的交点不等式的解集不等式的解集△>0或3△=0(或)无解△<0全体实数无解注:a<0的情况请同学们自己完成.要点诠释:抛物线在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1. 已知抛物线.求:(1)k为何值时,抛物线与x轴有两个交点;(2)k为何值时,抛物线与x轴有唯一交点;(3)k为何值时,抛物线与x轴没有交点. 【答案与解析】.(1)当,且,即当k>-3且k≠-1时,抛物线与x轴有两个交点.(2)当,且2(k+1)≠0.即当k=-3时,抛物线与x轴有唯一交点.(3)当b2-4ac=8k+24<0,且2(k+1)≠0.即当k<-3时,抛物线与x轴不相交.【总结升华】根据抛物线与x轴的交点个数可确定字母系数的取值范围,其方法是根据抛物线与x轴的交点个数,推出△值的性质,即列出关于字母系数的方程(或不等式),通过方程(或不等式)求解. 特别提醒:易忽视二次项系数2(k+1)≠0这一隐含条件.举一反三:用函数观点看一元二次方程356568 例1-2】【变式】(2014秋•越秀区期
上传时间:2023-04-30 页数:9
400人已阅读
(5星级)
【巩固练习】一.选择题1.下列关于的方程,其中不是分式方程的是()A.B. C. D.2.的结果是()A.B.C.D.13.分式方程的解是()A.0B.2C.0或2D.无解4.(2016•周口校级一模)若关于x的分式方程有增根,则m的值是()A.m=1﹣ B.m=2 C.m=3D.m=0或m=35.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的是()A.B.C.D.6.化简的结果是().A.B.C.D.7.若关于的方程有增根,则的值为( ).A.13B.-11 C.9D.38. 甲、乙两人分别从两地同时出发,若相向而行,则经过相遇;若同向而行,则经过 甲追上乙.那么甲的速度是乙的( )A.倍B.倍C.倍D.倍二.填空题9.若分式的值为0,则的值为______.10.若,且>0,则分式的值为______.11.化简______;=______.112.______.13.(2016春•成都期末)计算:= _____(结果化为只含正整数指数幂的形式).14.(沧浪区校级期中)已知,则=.15.若分式方程的解是,则______.16.个人天可做个零件(设每人速度一样),则个人用同样速度做个零件所需天数是________.三.解答题17.(1)已知,求,的值;(2)已知,求的值.18.(北京校级期中)已知x2﹣x﹣6=0,求的值. 19.为何值时,关于的方程会产生增根?20. 某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【答案与解析】一.选择题1. 【答案】C; 【解析】分式方程是分母含有未知数的等式.2. 【答案】B; 【解析】.3. 【答案】D; 【解析】去分母得,,解得是增根.4. 【答案】C;【解析】解:分式方程去分母得:,由分式方程有增根,得到,即,把代入整式方程得:.2故选C.5. 【答案】A; 【解析】原计划所用时间为,实际所用时间为,选A.6. 【答案】B;【解析】.7. 【答案】D;【解析】因为所给的关于的方程有增根,即有,所以增根是.而一定是整式方程的根,将其代入得,所以.8. 【答案】C;【解析】不妨设甲乙两人开始时相距s千米,甲的速度为,乙的速度为,则根据题意有于是,所以,即.甲的速度是乙的倍.二.填空题9. 【答案】0; 【解析】由题意且,解得.10.【答案】1; 【解析】由得,因为>0,所以,代入原式得.11.【答案】;; 【解析】;.12.【答案】4; 【解析】.13.【答案】;3 【解析】.14.【答案】; 【解析】解:设=k,则x=2k,y=3k,z=4k,则===.15.【答案】7; 【解析】将代入原方程,解得.16.【答案】; 【解析】每人每天做个零件,个人用同样速度做个零件所需天数是.三.解答题17.【解析】解:(1)因为,所以,所以,所以.所以.同理可得.(2)因为,所以,所以,所以.18.【解析】解:∵x2﹣x﹣6=0,∴x2=x+6,∴把x2=x+6代入:原式=6(6)636xxxx=26642xxxx4=66742xxx=6848xx=68(6)xx=18所以原式的值是18.19.【解析】解:方程两边都乘以,得.整理得.当时,方程无解.当时,.如果方程有增根,那么,即,或.当时,,所以;当时,,所以.所以当或时,原方程会产生增根.20.【解析】解:(1)设第一批购进书包的单价为元,则第二批购进书包的单价为元,第一批购进书包个,第二批购进书包个.依题意,得,整理,得,解得.经检验是原方程的根.(2)(元).答:第一批购进书包的单价为80元.商店共盈利3700元.5
上传时间:2023-04-30 页数:5
400人已阅读
(5星级)
浙江省 2021 年初中学业水平考试(湖州市)英语试题卷考生须知∶1. 全卷分试题卷和答题卷两部分。试题卷共 8 页, 答题卷共 2 页。全卷满分为 100 分, 考试时间为 100 分钟。2. ⅠⅡⅠ试题卷分卷和卷两部分。卷中试题(1— 43 小题)的答案填涂在答题卷上, Ⅱ卷中试题的答案写在答题卷相应的位置上, 写在试题卷上无效。卷 I说明∶本卷共三大题, 43 小题, 满分 61 分。一、听力(本题有 15 小题, 其中 1—10 小题每题1分, 11-15 小题每题 2 分, 共 20 分)注意∶听力共分三节。答题时, 请先将答案标在试卷上, 听力部分结束后, 请将答案转涂到客观题答题卷上。听每段对话或独白前, 你都有五秒钟的时间阅读这一小题, 听完后你将有五秒钟的时间回答这一小题。第一节∶听下面五段对话, 每段对话后有1个小题, 请从题中所给的 A、B、C三个选项中选择正确的选项。每段对话仅读一遍。 1. Where does the woman want to go?A. Hill Street. B. Cafe. C. Supermarket.2. When will the meeting begin?A. At 8:00. B. At 8:10. C. At 8:30. 3. What is Bob going to do this afternoon?A. Watch a movie. B. Study for a test. C. Go to Helen's house. 4. Where does the conversation probably take place?A. At a store. B. At a restaurant. C. At a cinema. 5. What does the man mean? A. He is busy tonight. B. The price is high. C. He doesn't like football. 第二节∶听下面两段较长对话, 每段对话后有2至3个小题, 请从题中所给的 A、B、C三个选项中选择正确的选项。每段对话读两遍。听下面一段较长对话, 回答第 6—7 小题。 6. What are the speakers going to do?A. Run. B. Train. C. Play. 7. Why do the speakers take part in the activity?A. To win the game. B. To keep healthy. C. To raise money. 听下面一段较长对话, 回答第 8-10 小题。 8. How does Tony feel? A. Tired. B. Bored. C. Sleepy9. What does the woman suggest?A. Listening to music. B. Seeing a doctor. C. Having a rest. 10. What's the possible relationship between the two speakers?A. Doctor and patient. B. Teacher and student. C. Mother and son. 第三节∶听下面一段独白, 独白后有5个小题, 请从题中所给的 A、B、C三个选项中选择正确的选项。独白读两遍。 11. Who is giving the speech?A. A visitor. B. A teacher. C. A guide. 12. What will Group Two do in the museum?A. Work as guides. B. Put on a short play. C. Do service work. 13. What does the speaker think
上传时间:2023-05-09 页数:10
399人已阅读
(5星级)
2021年四川省宜宾市中考数学试卷一、选择题;本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上.1. 2﹣的绝对值是( )A. 2B. C. D. 2. 下列图形是轴对称图形的是()A. B. C. D. 3. 2021年宜宾市中考人数已突破64000人,数据64000用科学记数法表示为()A. B. C. D. 4. 若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 4D. 85. 一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A. 30°B. 35°C. 40°D. 45°6. 下列运算正确的是()A. B. C. D. 7. 下列说法正确的是()A. 平行四边形是轴对称图形B. 平行四边形的邻边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对角线互相平分8. 若关于x的分式方程有增根,则m的值是()A. 1B. ﹣1C. 2D. ﹣29. 如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD的值是()A. B. 2C. D. 10. 若m、n是一元二次方程x2+3x﹣9=0的两个根,则的值是()A. 4B. 5C. 6D. 1211. 在我国远古时期,人们通过在绳子上打结来记录数量,即结绳计数,类似现在我们熟悉的进位制.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是()A. 27B. 42C. 55D. 21012. 如图,在矩形纸片ABCD中,点E、F分别在矩形的边AB、AD上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是()A. 2B. C. D. 3二、填空题:本大题共6个小题,每小题4分,共24分,请把答案直接填在答题卡对应题中横线上.13. 不等式2x﹣1>1的解集是______.14. 分解因式:______.15. 从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是,你认为最适合参加决赛的选手是____(填甲或乙或丙).16. 据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程__________.17. 如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是______.18. 如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论中,①点M、N的运动速度不相等;②存在某一时刻使;③逐渐减小;④.正确的是________.(写出所有正确结论的序号)三、解答题;本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)计算:;(2)化简:.20. 如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.21. 为帮助学生养成热爱美、发现美的艺术素养,某校开展了一人一艺的艺术选修课活动.学生根据自己的喜好选择一门艺术项目(A:书法,B:绘画,C:摄影,D:泥塑,E:剪纸),张老师随机对该校部分学生的选课情况进行调查后,制成了两幅不完整的统计图(如图所示).(1)张老师调查的学生人数是.(2)若该校共有学生1000名,请估计有多少名学生选修泥塑;(3)现有4名学生,其中2人选修书法,1人选修绘画,1人选修摄影,张老师要从这4人中任选2人了解他们对艺术选修课的看法,请用画树状图或列表的方法,求所选2人都是选修书法的概率.22. 全国历史文化名城宜宾有许多名胜古迹,始建于明朝的白塔是其中之一.如图,为了测量白塔的高度AB,在C处测得塔顶A的仰角为45°,再向白塔方向前进15米到达D处,又测得塔顶A的仰角为60°,点B、D、C在同一水平线上,求白塔的高度AB.(≈1.7,精确到1米)23. 如图,一次函数y=ax+b的图象与反比例函数的图象交于点A、B,与x轴交于点,若OC=AC,且=10(1)求反比例函数与一次函数的表达式;(2)请直接写出不等式ax+b>的解集.24. 如图1,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠C
上传时间:2023-05-08 页数:5
399人已阅读
(5星级)
1.7 平方差公式(1)一、学习目标与要求:1、经历探索平方差公式的过程,进一步发展符号感和推理能力2、会推导平方差公式,并能运用公式进行简单的计算和推理二、重点与难点:重点:运用平方差公式进行简单的计算和推理难点:理解理解平方差公式及其探索过程三、学习过程:复习巩固:计算:(多项式乘多项式)(1) (2) (3) (-2x-y)2(4) (x+y)(x2-xy+y2)探索发现:一、探索平方差公式计算下列各题,并用自己的语言叙述你的发现(1) (x+2)(x-2)(2) (1+3a)(1-3a)(3) x+5y)(x-5y)(4) (y+3z)(y-3z)你的发现:__________________________________________________________________再举例验证你的发现:例:归纳:平方差公式:(a+b)(a-b)=__________________语言叙述:___________________________________________________________________老师的提示:人们把某些特殊形式的多项式相乘写成公式,加以记忆、套用,以使计算快速、简洁. 在运用公式的过程中,要准确的把握公式的特点,平方差公式的特点:左边是两个数的和乘这两个数的差,右边是这两个数的平方差,那么在运用公式时,认准这两个数就成了问题的关键. 分析下面式子,你能认出那一部分是两数和?那一部分是这两数的差?两个数分别是什么?结果应该是哪个数的平方减去哪个数的平方吗?(1) (5+6x)(5-6x)(2) (x-2y)(x+2y)(3) (-m+n)(-m-n)现在你能计算了吗?例1 利用平方差公式计算(1) (5+6x)(5-6x)(2) (x-2y)(x+2y)(3) (4) (-m+n)(-m-n)巩固练习1:利用平方差公式计算(1) (a+2)(a-2)(2) (3a+2b)(3a-2b)(3) (mn-3n)(mn+3n)(4) (–x-1)(-x+1)例2 利用平方差公式计算(1) (2) 巩固练习2:利用平方差公式计算(1) (-4k+3)(-4k-3)(2) (3) (-2b- 5) (2b -5)(4) x2+(y-x)(y+x)(5) (an+b)(an-b)(6) (a+1)(a-1)(a2+1)学习小结:给大家说一说你用平方差公式进行计算的体会
上传时间:2023-04-30 页数:3
399人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159(不支持接听,可加微信)
微信小程序
微信公众号
回到顶部