

【巩固练习】一.选择题1.(2015•诏安县校级模拟)下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C. D.a=15,b=8,c=172. 下列三角形中,不是直角三角形的是( )A.三个内角之比为5∶6∶1 B. 一边上的中线等于这一边的一半C.三边之长为20、21、29D. 三边之比为1.5 : 2 : 33. 下列命题中,不正确的是()A. 三个角的度数之比为1:3:4的三角形是直角三角形;B. 三边之比为1: 3:2的三角形是直角三角形;C. 三个角的度数之比为1:2:2的三角形是直角三角形;D. 三边之比为2:2:2的三角形是直角三角形.4. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GHB.AB、EF、GH C.AB、CF、EF D.GH、AB、CD5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()6. cba,,为直角三角形的三边,且c为斜边,h为斜边上的高,下列说法:①222,,cba能组成一个三角形②cba,,能组成三角形③hbahc,,能组成直角三角形 ④hba1,1,1能组成直角三角形1其中正确结论的个数是()A.1B.2 C.3 D.4二.填空题7.若△ABC中,2babac,则∠B=____________.8.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是______三角形.9.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以2a、a、2a为边的三角形的面积为______.10.△ABC的两边ab,分别为5,12,另一边c为奇数,且abc是3的倍数,则c应为______,此三角形为______.11.(2015春•滑县期末)如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,则三角形为 三角形.12. 如果线段abc,,能组成一个直角三角形,那么2,2,2cba________组成直角三角形.(填能或不能).三.解答题13.已知abc、、是△ABC的三边,且222244acbcab,试判断三角形的形状.14.(2015春•江津区校级月考)如图所示,在正方形ABCD中,M为AB的中点,N为AD上的一点,且AN=AD,试猜测△CMN是什么三角形,请证明你的结论.(提示:正方形的四条边都相等,四个角都是直角)15.在等边△ABC内有一点P,已知PA=3,PB=4,PC=5.现将△APB绕A点逆时针旋转60°,使P点到达Q点,连PQ,猜想△PQC的形状,并论证你的猜想.2【答案与解析】一.选择题1.【答案】C;【解析】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.2.【答案】D;【解析】D选项不满足勾股定理的逆定理.3.【答案】C;【解析】度数之比为1:2:2,则三角形内角分别为36°:72°:72°.4.【答案】B;【解析】22222228,20,5,13,ABCDEFGHABEFGH,所以这三条线段能构成直角三角形.5.【答案】C;【解析】22222272425152025,.6.【答案】C;【解析】因为222abc,两边之和等于第三边,故222,,cba不能组成一个三角形,①错误;因为abc,所以cba,,能组成三角形,②正确;因为abch,所以2222222aabbhcchh,即222abhch,③正确;因为2222222222222111abccabababchh,所以④正确.二.填空题37.【答案】90°;【解析】由题意222bac,所以∠B=90°.8.【答案】直角;【解析】2AB=13,2BC=52,2AC=65,所以222ABBCAC.9.【答案】24;【解析】∵7<a<9,∴a=8. 10.【答案】13;直角三角形;【解析】7<c<17.11.【答案】直角;【解析】解:∵a2+b2+c2+50=6a+8b+10c∴a2+b2+c2﹣6a﹣8b
上传时间:2023-04-30 页数:5
600人已阅读
(5星级)
海南省2021年初中学业水平考试数学一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.的相反数是()A. -5B. C. D. 52. 下列计算正确的是()A. B. C. D. 3. 下列整式中,是二次单项式的是()A. B. C. D. 4. 天问一号于2020年7月23日在文昌航天发射场由长征五号遥四运载火箭发射升空,于2021年5月15日在火星成功着陆,总飞行里程超过450000000千米.数据450000000用科学记数法表示为()A. B. C. D. 5. 如图是由5个大小相同的小正方体组成的几何体,则它的主视图是()A. B. C. D. 6. 在一个不透明的袋中装有5个球,其中2个红球,3个白球,这些球除颜色外无其他差别,从中随机摸出1个球,摸出红球的概率是()A. B. C. D. 7. 如图,点都在方格纸的格点上,若点A的坐标为,点B的坐标为,则点C的坐标是()A. B. C. D. 8. 用配方法解方程,配方后所得的方程是()A. B. C. D. 9. 如图,已知,直线与直线分别交于点,分别以点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交直线b于点C,连接,若,则的度数是()A. B. C. D. 10. 如图,四边形是的内接四边形,是的直径,连接.若,则的度数是()A. B. C. D. 11. 如图,在菱形中,点分别是边的中点,连接.若菱形的面积为8,则的面积为()A. 2B. 3C. 4D. 512. 李叔叔开车上班,最初以某一速度匀速行驶,中途停车加油耽误了几分钟,为了按时到单位,李叔叔在不违反交通规则的前提下加快了速度,仍保持匀速行驶,则汽车行驶的路程y(千米)与行驶的时间t(小时)的函数关系的大致图象是()A. B. C. D. 二、填空题(本大题满分16分,每小题4分,其中第16小题每空2分)13. 分式方程的解是____.14. 若点在反比例函数的图象上,则____(填><或=).15. 如图,的顶点的坐标分别是,且,则顶点A的坐标是_____.16. 如图,在矩形中,,将此矩形折叠,使点C与点A重合,点D落在点处,折痕为,则的长为____,的长为____.三、解答题(本大题满分68分)17. (1)计算:;(2)解不等式组并把它的解集在数轴(如图)上表示出来.18. 为了庆祝中国共产党成立100周年,某校组织了党史知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元?19. 根据2021年5月11日国务院新闻办公室发布的《第七次全国人口普查公报》,就我国2020年每10万人中,拥有大学(指大专及以上)、高中(含中专)、初中、小学、其他等文化程度的人口(以上各种受教育程度的人包括各类学校的毕业生、肄业生和在校生)受教育情况数据,绘制了条形统计图(图1)和扇形统计图(图2).根据统计图提供的信息,解答下列问题:(1)______,_______;(2)在第六次全国人口普查中,我国2010年每10万人中拥有大学文化程度的人数约为0.90万,则2020年每10万人中拥有大学文化程度的人数与2010年相比,增长率是______%(精确到);(3)2020年海南省总人口约1008万人,每10万人中拥有大学文化程度的人数比全国每10万人中拥有大学文化程度的人数约少0.16万,那么全省拥有大学文化程度的人数约有______万(精确到1万).20. 如图,在某信号塔的正前方有一斜坡,坡角,斜坡的顶端C与塔底B的距离米,小明在斜坡上的点E处测得塔顶A的仰角米,且(点在同一平面内).(1)填空:_______度,______度;(2)求信号塔的高度(结果保留根号).21. 如图1,在正方形中,点E是边上一点,且点E不与点重合,点F是的延长线上一点,且.(1)求证:;(2)如图2,连接,交于点K,过点D作,垂足为H,延长交于点G,连接.①求证:;②若,求的长.22. 已知抛物线与x轴交于两点,与y轴交于C点,且点A的坐标为、点C的坐标为.(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P,求的面积;(3)如图2,有两动点在的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线按方向向终点B运动,点E沿线段按方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为t秒,请解答下列问题:
上传时间:2023-05-08 页数:7
599人已阅读
(5星级)
598人已阅读
(5星级)
1.某溶液中含有、 、、、五种离子。若向其中加入粉末充分反应后(溶液体积变化忽略不计),溶液中离子浓度保持不变的是()A. B. 、C. 、D. 、、【答案】A【解析】过氧化钠与水反应生成氢氧化钠和氧气,碳酸氢根离子与氢氧根离子反应生成碳酸根离子,亚硫酸根离子被氧化生成硫酸根离子,所以溶液中只有硝酸根离子浓度保持不变,选A。2.下列叙述中不正确的是()A. 向含有沉淀的水中通入至沉淀恰好溶解,再向溶液中加入饱和溶液,又有沉淀生成B. 向 溶液中逐滴加入等物质的量的稀盐酸,生成的与原的物质的量之比为C. 等质量的 和分别与足量盐酸反应,在同温同压下,生成的体积前者多D. 向饱和溶液中通,有结晶析出【答案】B【解析】解:A.向含有沉淀的水中通入至沉淀恰好溶解生成 ,再向溶液中加入饱和溶液,又有沉淀生成,故A正确; B.根据化学方程式: ,当碳酸钠和盐酸物质的量相等时,不会产生二氧化碳,故B错误; C. 和都与盐酸反应生成二氧化碳气体: ,,等物质的量的和分别与过量盐酸反应,放出质量相等, 和质量相等时, 的物质的量大,所以同温同压下,生成的体积多,故C正确; D.向饱和溶液中通入,会发生反应: ,常温下相同的溶剂时, 较易溶,所以析出的是碳酸氢钠,故D正确;故选:B。第 1 页,共 10 页3.现有、、的混合物粉末克,加入含的盐酸恰好完全溶解,并收集到气体(标准状况)。向反应后的溶液滴加,无明显变化。若将克该混合物在高温下与足量的充分反应后,残留固体的质量为()A. 克B. 克C. 克D. 克【答案】A【解析】解:、、的混合物粉末克,加入含的盐酸恰好完全溶解,向反应后的溶液滴加,无明显变化,说明生成物是氯化亚铁,根据氯离子守恒可知氯化亚铁的物质的量是,所以混合物中铁原子的物质的量是,质量是;将克该混合物在高温下与足量的充分反应后,残留固体是铁,则其质量为,答案选A。4.向、的混合溶液中加入铁粉,充分反应后仍有固体存在,则下列判断不正确的是()A. 溶液中一定含有B. 溶液中一定含有C. 加入溶液一定不变红色D. 剩余固体中一定含铜【答案】A【解析】的氧化性强于,加入铁粉,先与反应,,反应后有固体存在,铁把全部转化成后,继续与反应,发生,A、如果铁粉过量,会把全部置换出来,溶液中不存在,故说法错误;B、根据上述分析,溶液中一定含有,故说法正确;C、溶液中不含,加入后,溶液不变红,故说法正确;D、根据上述分析,故说法正确。5.铁、铜混合粉末加入到溶液中,剩余固体质量为。下列说法正确的是()A. 剩余固体是铁、铜混合物B. 原固体混合物中铜的质量是C. 反应后溶液中D. 反应后溶液中【答案】D第 2 页,共 10 页【解析】铁的还原性强于铜,把混合物加入氯化铁溶液中,铁离子先与单质铁反应,氯化铁的物质的量为,, 解得:, ,由题意,溶解的金属的质量是,则两种金属都参与反应,且因为有固体剩余,单质铁和铁离子一定反应完全,故A错误;假设参与反应的单质铁和铜的物质的量分别为、,根据质量守恒和电子得失守恒可得:解得:,,即原固体混合物中铜单质的质量为:,故B错误;溶液中亚铁离子的物质的量等于,故C错误;反应后溶液中的亚铁离子来源于原来的铁离子和参与反应的铁单质,铜离子来源于参与反应的铜单质,其物质的量之和为:,故D正确。6.下列除杂试剂选择正确的是()A. AB. BC. CD. D【答案】C【解析】解:A.氯气和氯化氢均与溶液反应,应该用饱和食盐水,故A错误;B.在二氧化碳存在的情况下,一氧化碳很难与氧气反应,应该通过炽热的氧化铜除去二氧化碳中的一氧化碳,故B错误;C.氯气与反应生成氯化铁,则通入过量的可除杂,故C正确;D.与碳酸钠和碳酸氢钠均反应,不能除去碳酸钠溶液中的碳酸氢钠,故D错误;故答案选C。第 3 页,共 10 页7.下列离子的检验方法合理的是()A. 向某溶液中滴入溶液呈血红色,说明不含B. 向某溶液中通入,然后再加入溶液变血红色,说明原溶液中含有C. 向某溶液中加入溶液,得红褐色沉淀,说明溶液中含有D. 向某溶液中加入溶液得白色沉淀,又观察到颜色逐渐变为红褐色,说明该溶液中只含有,不含有【答案】C【解析】A、溶液与含溶液反应的方程式为:,而与溶液不反应,如果该溶液既含,又含,滴加溶液,溶液呈红色,证明存在而不能证明不含,故A错误; B、若原溶液中含,通入,氯气将氧化成,滴加溶液后显红色,若原溶液中不含,含有,通入,加入溶液同样可以变血红色,故B错误;C、加入溶液,得红褐色沉淀,说明溶液中含有,故C正确;D、氢氧化镁为白色沉淀,能被红褐色沉淀掩盖,无法确定,故D错误。故选C。8. 现有一瓶
上传时间:2023-06-16 页数:10
597人已阅读
(5星级)
595人已阅读
(5星级)
《二元一次方程组》全章复习与巩固(基础)知识讲解 【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法; 3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念.【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(一般用和),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:(1)在方程中元是指未知数,二元就是指方程中有且只有两个未知数.(2)未知数的次数为1是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程1组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组.要点诠释:(1)它的一般形式为(其中,,,不同时为零).(2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号表示同时满足,相当于且的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有(或)的代数式表示(或),即变成(或)的形式;②将(或)代入另一个方程(不能代入原变形方程)中,消去(或),得到一个关于(或)的一元一次方程;③解这个一元一次方程,求出(或)的值;④把(或)的值代入(或)中,求(或)的值;⑤用联立两个未知数的值,就是方程组的解.要点诠释: (1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:2①根据等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值;⑤将两个未知数的值用联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写答,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)设、答两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组. 等都是三元一次方程组.要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍
上传时间:2023-04-30 页数:7
595人已阅读
(5星级)
4.1 用表格表示的变量间关系1.某城市1949年至1994年期间每隔5年的人口如下表:年份194919541959196419691974197919841989人口数/万人44.85.97.49.613.71822.427.1(1)指出哪个量是变量,哪个量是自变量,哪个量是因变量;(2)指出1984年人口是多少?(3)请估算一下,照这样发展1994年,这个城市的人口将达到多少?2.三口之家,冬天饮用桶装矿泉水的情况如下表:日期星期一星期二星期三星期四星期五星期六星期日桶中剩水4.5加仑3.9加仑3.5加仑3.1加仑2.5加仑2加仑1.5加仑(1)根据表中的数据,说一说哪些量是在发生变化?自变量和因变量各是什么?(2)能说出下周一桶中还有多少水吗?(3)根据表格中的数据,说一说星期一到星期日,桶中的水是如何变化的.3.小华感冒发烧,临睡前吃了退热镇痛药,妈妈每隔两小时给她测一次体温,测得结果如下表:时间(时)18202424681012体温(℃)38.438.538.137.637.236.936.736.336.2看表回答小华几点钟体温最高,几点钟体温最低.利用周日休息时间每隔两小时测一下自己的体温,并填写出表格.4.某种蔬菜的价格随季节变化如下表:单位:元/千克月份123456789101112价格5.005.505.004.802.001.501.000.901.502.003.003.50(1)观察表说出变量、自变量、因变量;(2)哪个月这种蔬菜价格最高,哪个月这种蔬菜的价格最低;(3)计算一下这种蔬菜的年平均价.参考答案1.(1)年份、人口数是变量,年份是自变量,人口数是因变量(2)22.4万(3)应超过30万2.(1)日期数、桶中剩水量是变量,日期数是自变量,桶中剩水量是因变量(2)能有水(提示:最多一天减少0.6加仑)(3)水一天比一天少,大约每天减少0.5加仑.3.20时小华体温最高是38.4℃,12时小华体温最低是36.℃.4.(1)月份,价格是变量,月份是自变量,价格是因变量(2)2月份这种蔬菜的价格最高是5.50元/千克,8月份这种蔬菜的价格最低是090元/千克(3)2.98元/千克.
上传时间:2023-04-30 页数:2
594人已阅读
(5星级)
北师大版七年级数学上册第6章《数据的收集与整理》单元测试试卷及答案(1)参考完成时间:90分钟一、选择题(本题共10小题,每小题3分,共30分)1.下列调查中,适宜采用全面调查(普查)方式的是().A.对全国中学生心理健康现状的调查B.对冷饮市场上冰淇淋质量情况的调查C.对我市市民实施低碳生活情况的调查D.以我国首架大型民用直升机各零部件的检查2.下列的调查中,选取的样本具有代表性的是().A.为了解某地区居民的防火意识,对该地区的初中生进行调查B.为了解某校1 200名学生的视力情况,随机抽取该校120名学生进行调查C.为了解某商场的平均日营业额,选在周末进行调查D.为了解全校学生课外小组的活动情况,对该校的男生进行调查3.为了解某市参加中考的32 000名学生的体重情况,抽查了其中1 600名学生的体重进行统计分析.下面叙述正确的是().A.32 000名学生是总体B.1 600名学生的体重是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查4.数据1,1,2,2,3,3,3的极差是().A.1B.2C.3D.65.某校开展形式多样的阳光体育活动,七(3)班同学积极响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形图(如图所示),由图可知参加人数最多的体育项目是().七(3)班同学参加体育项目情况的扇形统计图A.排球B.乒乓球C.篮球D.跳绳6.体育老师对九年级(1)班学生你最喜欢的体育项目是什么?(只写一项)的问题进行了调查,把所得数据绘制成频数直方图(如图).由图可知,最喜欢篮球的学生的人数是().九年级(1)班学生最喜欢体育项目的频数分布直方图A.8B.12C.16D.207.一次考试中,某班级的数学成绩统计图如下.下列说法错误的是().A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是268.2012年12月份,某市总工会组织该市各单位参加迎新春长跑活动,将报名的男运动员分成3组:青年组、中年组、老年组,各组人数所占比例如图所示,已知青年组有120人,则中年组与老年组人数分别是().A.30,10B.60,20C.50,30D.60,109.如图是某校初一学生到校方式的条形图,根据图形可得出步行人数占总人数的().A.20%B.30%C.50%D.60%10.随着经济的发展,人们的生活水平不断提高.下图分别是某景点2010~2012年游客总人数和旅游收入年增长率统计图.已知该景点2011年旅游收入4 500万元.下列说法:①三年中该景点2012年旅游收入最高;②与2010年相比,该景点2012年的旅游收入增加[4 500×(1+29%)-4 500×(1-33%)]万元;③若按2012年游客人数的年增长率计算,2013年该景点游客总人数将达到280×2802551255万人次.其中正确的个数是().来源:http://www.bcjy123.com/tiku/A.0B.1C.2D.3二、填空题(本题共6小题,每小题4分,共24分)11.为了解一批炮弹的爆炸半径,宜采用__________的方式进行调查.(填:普查或抽样调查)12.为了反映某交通路口在某一天各个时段车流情况,应该采用__________统计图.13.一天的气温变化情况用__________统计图表示比较合适.14.在青年歌手大奖赛中,为更好地了解各选手所获票数的多少,应用__________统计图表示;要更好地了解各选手观众支持率的变化趋势,应用__________统计图.15.某校为鼓励学生课外阅读,制定了阅读奖励方案.方案公布后,随机征求了100名学生的意见,并对持赞成、反对、弃权三种意见的人数进行统计,绘制成如图所示的扇形图.若该校有1 000名学生,则赞成该方案的学生约有__________人.16.赵老师想了解本校生活中的数学知识大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有__________人.100份生活中的数学知识大赛试卷的成绩频数直方图三、解答题(本题共4小题,共46分)17.(10分)蔬菜种植专业户种西红柿80公顷,土豆56公顷,茄子24公顷,各占总种植面积的百分之几?制成扇形图.18.(12分)第15中学的学生在社会实践中,调查了500位杭州市民某天早上出行上班所用的交通工具,结果用如下扇形图表示.(1)请你将这个统计图改成用折线图表示的形式; 来源:ht
上传时间:2023-04-30 页数:5
594人已阅读
(5星级)
中考总复习:多边形与平行四边形-巩固练习(基础)【巩固练习】一、选择题1.任意三角形两边中点的连线与第三边上的中线 ( ).A.互相平分 B.互相垂直 C.相等 D.互相垂直平分2.(2015春•平顶山期末)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个B.1个C.2个D.3个3.若一个多边形的对角线的条数恰好为边数的3倍,则这个多边形的边数为().A.6B.7C.8D.94.如图,平行四边形ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为() A.2 B.C.4 D.5.下列说法正确的是( ).A.平行四边形的对角线相等B.一组对边平行,另一组对边相等的四边形是平行四边形C.平行四边形的对角线交点到一组对边的距离相等D.沿平行四边形的一条对角线对折,这条对角线两旁的图形能够重合6.如图,在□ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形(). (A)AE=CF (B)DE= BF (C)∠ADE=∠CBF (D)∠AED=∠CFB1二、填空题7. 已知:A、B、C、D四点在同一平面内,从①AB∥CD ②AB=CD ③BC∥AD ④BC=AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法共有________种.8.平行四边形两邻边上的高分别是和,高的夹角是60°,则这个平行四边形的周长为____,面积为__________.9.如图,已知直线m∥n,A、B为直线n上两点,C、P为直线m上两点, (1)请写出图中面积相等的三角形________________________________________.(2)如果A、B、C为三个定点,点P在m上移动,那么,无论点P移动到什么位置,总有______与△ABC的面积相等,理由是________________.10.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________. 11.(2012•茂名)从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n的值是_______________.12. (2014春•深圳期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,过点O作PF⊥BC于点F,交AD于点E,交BA的延长线于点P.若PE=EO=2,PA=3,则△OBC的面积等于 .三、解答题13. 如图,已知△ABC,以BC为边在点A的同侧作正△DBC,以AC、AB为边在△ABC的外部作正△EAC和正△FAB.求证:四边形AEDF是平行四边形. 214.(2015•枣庄)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.15.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.16(2011•贵阳)[阅读]在平面直角坐标系中,以任意两点P( x1,y1)、Q(x2,y2)为端点的线段中点坐标为(122xx,122yy).[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为_______.3(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.【答案与解析】一.选择题1.【答案】A.2.【答案】B.【解析】由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以,故选B.3.【答案】D.【解析】设边数为n,则(3=32nnn),∴n=9.4.【答案】B.【解析】在▱ABCD中,AB∥CD且AB=CD.又∵AE∥BD,∴四边形ABDE为平行四边形,∴DE=AB.∵EF⊥BC,DF=2,∴CE=2DF=4.∵∠ECF=∠ABC=60°,∴EF=CE·sin∠ECF=4×=2.5.
上传时间:2023-04-30 页数:7
594人已阅读
(5星级)
593人已阅读
(5星级)
中考总复习:多边形与平行四边形--知识讲解(基础)【考纲要求】1. 多边形A:了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.B:会用多边形的内角和与外角和公式解决计算问题; 能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形.(2)平行四边形A:会识别平行四边形.B:掌握平行四边形的概念、判定和性质,会用平行四边形的性质和判定解决简单问题.C:会运用平行四边形的知识解决有关问题.【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n-2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌1(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.2【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三: 【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2. (2011·十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有
上传时间:2023-04-30 页数:9
590人已阅读
(5星级)
中考冲刺:代几综合问题—知识讲解(基础)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为认真审题、理解题意;探求解题思路;正确解答三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1. 几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3. 几何论证题主要考查学生综合应用所学几何知识的能力.4. 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2) 注意推理和计算相结合,力求解题过程的规范化;(3) 注意掌握常规的证题思路,常规的辅助线作法;(4) 注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,则CE的长为_________.1【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题22.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上
上传时间:2023-04-30 页数:11
588人已阅读
(5星级)
584人已阅读
(5星级)
2021年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的展开图,该几何体是()A. 长方体B. 圆柱C. 圆锥D. 三棱柱【答案】B【解析】【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.2. 党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.年,中央财政累计投入全面改善贫困地区义务教育薄弱学校基本办学条件专项补助资金1692亿元,将169200000000用科学记数法表示应为()A. B. C. D. 【答案】C【解析】【分析】根据科学记数法可直接进行求解.【详解】解:由题意得:将169200000000用科学记数法表示应为;故选C.【点睛】本题主要考查科学记数法,熟练掌握科学记数法的表示方法是解题的关键.3. 如图,点在直线上,.若,则的大小为( )A. B. C. D. 【答案】A【解析】【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4. 下列多边形中,内角和最大的是()A. B. C. D. 【答案】D【解析】【分析】根据多边形内角和公式可直接进行排除选项.【详解】解:A、是一个三角形,其内角和为180°;B、是一个四边形,其内角和为360°;C、是一个五边形,其内角和为540°;D、是一个六边形,其内角和为720°;∴内角和最大的是六边形;故选D.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.5. 实数在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D. 【答案】B【解析】【分析】由数轴及题意可得,依此可排除选项.【详解】解:由数轴及题意可得:,∴,∴只有B选项正确,故选B.【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.6. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是()A. B. C. D. 【答案】C【解析】【分析】根据题意可画出树状图,然后进行求解概率即可排除选项.【详解】解:由题意得:∴一枚硬币正面向上、一枚硬币反面向上的概率是;故选C.【点睛】本题主要考查概率,熟练掌握利用树状图求解概率是解题的关键.7. 已知.若为整数且,则的值为()A. 43B. 44C. 45D. 46【答案】B【解析】【分析】由题意可直接进行求解.【详解】解:∵,∴,∴,∴;故选B.【点睛】本题主要考查算术平方根,熟练掌握算术平方根是解题的关键.8. 如图,用绳子围成周长为的矩形,记矩形的一边长为,它的邻边长为,矩形的面积为.当在一定范围内变化时,和都随的变化而变化,则与与满足的函数关系分别是()A. 一次函数关系,二次函数关系B. 反比例函数关系,二次函数关系C. 一次函数关系,反比例函数关系D. 反比例函数关系,一次函数关系【答案】A【解析】【分析】由题意及矩形的面积及周长公式可直接列出函数关系式,然后由函数关系式可直接进行排除选项.【详解】解:由题意得:,整理得:,,∴y与x成一次函数的关系,S与x成二次函数的关系;故选A.【点睛】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键.二、填空题(共16分,每题2分)9. 若在实数范围内有意义,则实数的取值范围是_______________.【答案】【解析】【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:,解得:;故答案为.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10. 分解因式:______________.【答案】【解析】【分析】根据提公因式法及平方差公式可直接进行求解.【详解】解:;故答案为.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.11. 方程的解为______________.【答案】【解析】【分析】根据分式方程的解法可直接进行求解.【详解】解:,∴,经检验:是原方程的解.故答案为:x=3.【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键.12. 在平面直角坐标系中,若反比例函数的图象经过点和点,则的值为______________.【答案】【解析】【分析】由题意易得,然后再利用反比例函数的意义可进行求解问题.【详解】解:把点代入反比例函数得:,∴,解得:,故答案为-2.【点睛】本题主要考查反比例函数的图象与性质,熟练掌握反比例函数的
上传时间:2023-05-08 页数:28
584人已阅读
(5星级)
中考总复习:一次方程及方程组--知识讲解【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】1 【考点梳理】考点一、一元一次方程1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式.2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根).(3)求方程的解的过程,叫做解方程.3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来).要点诠释:解一元一次方程的一般步骤步骤名 称方 法依据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2去括号去括号法则(可先分配再去括号)乘法分配律注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号2(右边)4合并同类项分别将未知项的系数相加、常数项相加1、整式的加减;2、有理数的加法法则单独的一个未知数的系数为±15系数化为1在方程两边同时除以未知数的系数(或方程两边同时乘以未知数系数的倒数)等式性质2不要颠倒了被除数和除数(未知数的系数作除数——分母)*6检根x=a方法:把x=a分别代入原方程的两边,分别计算出结果. ① 若 左边=右边,则x=a是方程的解;② 若 左边≠右边,则x=a不是方程的解.注:当题目要求时,此步骤必须表达出来.说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组.要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组.2.二元一次方程组的一般形式要点诠释:a1、a2不同时为0,b1、b2不同时为0,a1、b1不同时为0,a2、b2不同时为0.3. 二元一次方程组的解法(1) 代入消元法;(2) 加减消元法.要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y=0时,求x的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤: 31.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释: 列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程是关于x的一元一次方程,则n的值为(). A.2 B.4C.3 D.1【思路点拨】未知数x的指数是1即可.【答案】B;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解.举一反三:【变式1】已知关于x的方程4x-3m=2的解是x=5,则m的值为.【答案】由题意可知4×5-3m=2,∴m=6.一次方程及方程组 404191 例4【
上传时间:2023-04-30 页数:8
583人已阅读
(5星级)
《二元一次方程组》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1.解方程时,去分母正确的是().A.3(x+1)=1-5(2x-1) B.3x+3=15-10x-5C.3(x+1)=15-5(2x-1)D.3x+1=15-10x+52. 某书中一道方程题:,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是,那么□处应该是数字().A.-2.5B.2.5C.5D.73.已知式子与是同类项,那么a,b的值分别是( )A.B.C.D.4.船在顺水中的速度为50千米/小时,在逆水中的速度为30千米/小时,则水流的速度为().A.10千米/小时 B.20千米/小时 C.40千米/小时 D.30千米/小时5.已知则( ).A. B. C. D. 6.(2015•广州)已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.27. 已知11yx 是方程32ayx的一个解, 那么a的值是( ).A. 1B. 3 C.-3D. -18. 如图,AB⊥BC,∠ABC的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°,y°,那么下面可以求出这两个角的度数的方程组是().A.;15,90yxyx B.;152,90yxyx C.;215,90yxyxD..152,90yxyx1二、填空题9.若x=-2是关于x的方程324ax的解,则a=.10.由3x=2x+1变为3x-2x=1,是方程两边同时加上.11. 关于方程,当时,它为一元一次方程,当时,它为二元一次方程.12.(2015•大竹县校级模拟)若方程mx+ny=6的两个解是,,则m= ,n= .13.已知3:2:yx,且4xy,则y的值为 .14.方程组 的解为____________.] 15.二元一次方程x+y=-2的一个整数解可以是________.16.已知a、b互为相反数,并且3a-2b=5,则a2+b2=________.三、解答题17.已知代数式的值为0,求代数式的值.18. 解下列方程组:(1) ; (2)(韶关)解方程组19. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现在36张白铁皮,用多少张制盒身,多少张制盒底,可以使盒身与盒底正好配套?20.(2015•东莞)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?【答案与解析】一.选择题1. 【答案】C; 【解析】去分母时避免漏乘常数项,当分子是多项式时,去分母后给分子加上括号.2. 【答案】C;2 【解析】把x=-2.5代入方程,再把□当作未知数解方程即可. 3. 【答案】A;【解析】由同类项的概念,得,解得.4. 【答案】A.;【解析】设水流速度为千米/小时,船在静水中的速度为千米/小时,由题意得:,①+②得,所以.5. 【答案】B;【解析】由题意知 ,解方程得.6. 【答案】B; 【解析】解:,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,则a+b=4, 也可以①+②得:4a+4b=16,所以得:a+b=4. 故选B.7.【答案】A; 【解析】将解代入方程,解得.8.【答案】A.二、填空题9. 【答案】112;【解析】将代入得:.10.【答案】-2x;【解析】本题考查等式的性质.11.【答案】-1,1; 【解析】因为是一次方程,所以,解得,当时,代入原方程得,为二元一次方程;当时,代入原方程得,为一元一次方程.12. 【答案】4;2.【解析】把, 分别代入mx+ny=6,3得,(1)+(2),得3m=12,m=4,把m=4代入(2),得8﹣n=6,解得n=2.所以m=4,n=2.13. 【答案】12;【解析】联立方程组,解得.14. 【答案】;15.
上传时间:2023-04-30 页数:5
583人已阅读
(5星级)
【巩固练习】一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? () .A.200(30-x)+50(30-y) = 1800B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800D.200(30-x)十50[30-(30-x)-y]=18002.(2015春•承德校级月考)现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为()A.129 B.120 C.108 D.963.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款().A.288元B.322 元C.288元或316元D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了 ().A.18道 B.19道C.20道D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有().A.B.C.D.6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A. B. C. D.二、填空题7.(2016•盐城)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需 分钟.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度1是它的,另一根露出水面的长度是它的,两根铁棒长度之和为55cm,则木桶中水的深度是cm.9.(2015春•沂源县期末)一个水池有两个进水管,单独开甲管注满水池需2小时,单独开乙管注满水池需3小时,两个同时开注满水池的时间是_________小时.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.三、解答题13.(2015春•自贡期末)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:商品价格AB进价(元/件)12001000售价(元/件)13501200(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?215.(2016•广安)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润
上传时间:2023-04-30 页数:6
583人已阅读
(5星级)
中考总复习:勾股定理及其逆定理(基础)【考纲要求】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题;4.加强知识间的内在联系,用方程思想解决几何问题.以体现代数与几何之间的内在联系.【知识网络】【考点梳理】考点一、勾股定理1.勾股定理:直角三角形两直角边ab、的平方和等于斜边c的平方.(即:222abc)【要点诠释】勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了勾三,股四,弦五形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方.2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法.用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理.3.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:①已知直角三角形的任意两边长,求第三边,在ABC中,90C,则22cab,22bca,22acb;②知道直角三角形一边,可得另外两边之间的数量关系;③可运用勾股定理解决一些实际问题.考点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.12.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长abc、、,满足222abc,那么这个三角形是直角三角形. 【要点诠释】①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形来确定三角形的可能形状;②定理中a,b,c及222abc只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222acb,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边;③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形.3.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222abc中,a,b,c为正整数时,称a,b,c为一组勾股数;②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等;③用含字母的代数式表示n组勾股数:221,2,1nnn(2,nn为正整数); 2221,22,221nnnnn(n为正整数)2222,2,mnmnmn(,mnm,n为正整数).考点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及其逆定理的综合应用1.(2014春•河西区期末)在正方形ABCD中,E是BC的中点,F为CD上一点,且,试判断△AEF是否是直角三角形?试说明理由.【思路点拨】首先设正方形的边长为4a,则CF=a,DF=3a,CE=BE=2a.根据勾股定理可求出AF,AE和EF的长度.如果它们三个的长度满足勾股定理,△AEF为直角三角形,否则不是直角三角形.【答案与解析】解:设正方形的边长为4a,2∵E是BC的中点,,∴CF=a,DF=3a,CE=BE=2a.由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2=5a2,AE2=AB2+BE2=16a2+4a2=20a2,∴AF2=EF2+AE2,∴△AEF为直角三角形.【总结升华】勾股定理的应用.在解答此类题时有一个小窍门,题干中各边长都没有给出确定的值,我们已知各边长的比值,这时我们可以将边长设成具体的值.这样解题时用到的都是数字,表达方便.举一反三: 【变式】如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为().A.14B.16 C.20D.28【答案】D.根据题意可知五个小矩形的周长之和正好能平移到大矩形的四周,故即可得出答案:∵AC=10,BC=8,∴AB=6,图中五个小矩形的周长之和为:6+8+6+8=28.2.如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为().A.14 B.15C. 23D. 32 【思路点拨】以A为圆心,AB长为半径
上传时间:2023-04-30 页数:9
582人已阅读
(5星级)
中考冲刺:代几综合问题—知识讲解(提高)【巩固练习】一、选择题1.(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A.B. C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为( )二、填空题13.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4.(2016•梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是 .三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 27.条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.39.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10.(2015•成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐
上传时间:2023-04-30 页数:14
581人已阅读
(5星级)
中考冲刺:代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为认真审题、理解题意;探求解题思路;正确解答三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1. 几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3. 几何论证题主要考查学生综合应用所学几何知识的能力.4. 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2) 注意推理和计算相结合,力求解题过程的规范化;(3) 注意掌握常规的证题思路,常规的辅助线作法;(4) 注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?1(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:2由题意,得t
上传时间:2023-04-30 页数:14
580人已阅读
(5星级)
客服
客服QQ:
2505027264
客服电话:
18182295159(不支持接听,可加微信)
微信小程序
微信公众号
回到顶部