首页 / 资源检索
  • 中考生物状元笔记典藏版.pdf

    中考状元笔记 生物初中学霸提升成绩的 16 个习惯 1、记忆习惯。一分钟记忆,把记忆和时间联系起来,这里还含有注意的习惯。一分钟写多少字,读多少字,记多少字,时间明确的时候,注意力一定好。把学习任务和时间联系起来,通过一分钟注意、记忆来培养学习习惯。 2、演讲习惯。让自己会整理、表达自己的思想,演讲是现代人应该具有的能力。 3、读的习惯。读中外名著或伟人传记,与高层次的思想对话,每天读一、两分钟,与大师为伍,很多教育尽在不言中,一旦形成习惯,自己会终生受益。 4、写的习惯。写日记,有话则长,无话则短,通过日记可以看出一个人有没有能力,有没有思想,有没有一以贯之的品质。 5、定计划的习惯。凡事预则利、不预则废。后进生毛病都出在计划性不强,让人家推着走,而优秀的自己长处就在于明白自己想要干什么。 6、预习习惯。让自己学进去,感受学习、探索、增长能力的快乐。所以请各位同学一定要培养自己预习的习惯。 7、适应老师的习惯。自己同时面对各学科教师,长短不齐、在所难免。自己要适应老师,与老师共同进步,不要稍不如意就埋怨环境。 8、大事做不来,小事赶快做的习惯。这也是非常要紧的一个习惯。尖子自己做尖子的事,后进自己别盲目攀比。大的目标够不到,赶快定小的目标。难题做不了, 挑适合你的容易做的题去做。人生最可怕的就是大事做不来,小事不肯做,高不能 成,低不肯就,上得去、下不来。所以要让我们的自己永不言败。 9、自己留作业的习惯。老师留的作业不一定同时适应所有同学。同学们要让自己做到脚踏实地、学有所得,从自己的实际出发,为自己布置作业。 10、错题集的习惯。每次考试之后,90 多分的、50 多分的、30 多分的同学,如何整理错题?扔掉的分数就不要了,这次 30 分,下次 40 分,这就是伟大的成绩。找到可以接受的类型题、同等程度的知识点研究一下提高的办法。整理错题集是很多同学公认的好习惯。 11、出考试题的习惯。自己应该觉得考试不神秘。高中自己应该会出高考试题, 初中自己会出中考试题。 12、筛选资料、总结的习惯。自己要会根据自己实际,选择学习资料。 十二个习惯,不要求齐头并进,每个同学要有自己的特点,让老师以教书为乐, 让自己以学习为快乐。这快乐要建立在养成这些良好习惯的基础上。祝大家更多地享受到学习的快乐!

    上传时间:2023-04-29 页数:153

    620人已阅读

    (5星级)

  • 中考数学状元笔记典藏版.pdf

    NO.Date第三章一元-次户程知识概念一元-次方程的考点屏析考点一:一元-次方翟的屏考点二:一元-次方程的性质考点三:-元-次力程的解法考点四;-元-次方程_综合考点五:一元一次方程的应用第囚章图形的认识初步图形的初步认识复习纲要直纯,射线、线投角土年级数学(下)知识点第一章相交线与平行线知识概念平行线与相交线考点剖析考点一:互余与互补考点二:平行线的性质与判定考点三:尺知作图第二章平面直角坐标系初中跟谁学 初中跟谁学 初中跟谁学初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学 初中跟谁学

    上传时间:2023-04-29 页数:229

    1.06k人已阅读

    (5星级)

  • 中考物理状元笔记典藏版.pdf

    中考状元笔记 物理初中学霸提升成绩的 16 个习惯 1、记忆习惯。一分钟记忆,把记忆和时间联系起来,这里还含有注意的习惯。一分钟写多少字,读多少字,记多少字,时间明确的时候,注意力一定好。把学习任务和时间联系起来,通过一分钟注意、记忆来培养学习习惯。 2、演讲习惯。让自己会整理、表达自己的思想,演讲是现代人应该具有的能力。 3、读的习惯。读中外名著或伟人传记,与高层次的思想对话,每天读一、两分钟,与大师为伍,很多教育尽在不言中,一旦形成习惯,自己会终生受益。 4、写的习惯。写日记,有话则长,无话则短,通过日记可以看出一个人有没有能力,有没有思想,有没有一以贯之的品质。 5、定计划的习惯。凡事预则利、不预则废。后进生毛病都出在计划性不强,让人家推着走,而优秀的自己长处就在于明白自己想要干什么。 6、预习习惯。让自己学进去,感受学习、探索、增长能力的快乐。所以请各位同学一定要培养自己预习的习惯。 7、适应老师的习惯。自己同时面对各学科教师,长短不齐、在所难免。自己要适应老师,与老师共同进步,不要稍不如意就埋怨环境。 8、大事做不来,小事赶快做的习惯。这也是非常要紧的一个习惯。尖子自己做尖子的事,后进自己别盲目攀比。大的目标够不到,赶快定小的目标。难题做不了, 挑适合你的容易做的题去做。人生最可怕的就是大事做不来,小事不肯做,高不能 成,低不肯就,上得去、下不来。所以要让我们的自己永不言败。 9、自己留作业的习惯。老师留的作业不一定同时适应所有同学。同学们要让自己做到脚踏实地、学有所得,从自己的实际出发,为自己布置作业。 10、错题集的习惯。每次考试之后,90 多分的、50 多分的、30 多分的同学,如何整理错题?扔掉的分数就不要了,这次 30 分,下次 40 分,这就是伟大的成绩。找到可以接受的类型题、同等程度的知识点研究一下提高的办法。整理错题集是很多同学公认的好习惯。 11、出考试题的习惯。自己应该觉得考试不神秘。高中自己应该会出高考试题, 初中自己会出中考试题。 12、筛选资料、总结的习惯。自己要会根据自己实际,选择学习资料。 十二个习惯,不要求齐头并进,每个同学要有自己的特点,让老师以教书为乐, 让自己以学习为快乐。这快乐要建立在养成这些良好习惯的基础上。祝大家更多地享受到学习的快乐!

    上传时间:2023-04-29 页数:142

    673人已阅读

    (5星级)

  • 中考语文状元笔记典藏版.pdf

    中考语文状元笔记典藏版.pdf

    上传时间:2023-04-29 页数:196

    547人已阅读

    (5星级)

  • 中考政治状元笔记典藏版.pdf

    中考状元笔记 政治初中学霸提升成绩的 16 个习惯 1、记忆习惯。一分钟记忆,把记忆和时间联系起来,这里还含有注意的习惯。一分钟写多少字,读多少字,记多少字,时间明确的时候,注意力一定好。把学习任务和时间联系起来,通过一分钟注意、记忆来培养学习习惯。 2、演讲习惯。让自己会整理、表达自己的思想,演讲是现代人应该具有的能力。 3、读的习惯。读中外名著或伟人传记,与高层次的思想对话,每天读一、两分钟,与大师为伍,很多教育尽在不言中,一旦形成习惯,自己会终生受益。 4、写的习惯。写日记,有话则长,无话则短,通过日记可以看出一个人有没有能力,有没有思想,有没有一以贯之的品质。 5、定计划的习惯。凡事预则利、不预则废。后进生毛病都出在计划性不强,让人家推着走,而优秀的自己长处就在于明白自己想要干什么。 6、预习习惯。让自己学进去,感受学习、探索、增长能力的快乐。所以请各位同学一定要培养自己预习的习惯。 7、适应老师的习惯。自己同时面对各学科教师,长短不齐、在所难免。自己要适应老师,与老师共同进步,不要稍不如意就埋怨环境。 8、大事做不来,小事赶快做的习惯。这也是非常要紧的一个习惯。尖子自己做尖子的事,后进自己别盲目攀比。大的目标够不到,赶快定小的目标。难题做不了, 挑适合你的容易做的题去做。人生最可怕的就是大事做不来,小事不肯做,高不能 成,低不肯就,上得去、下不来。所以要让我们的自己永不言败。 9、自己留作业的习惯。老师留的作业不一定同时适应所有同学。同学们要让自己做到脚踏实地、学有所得,从自己的实际出发,为自己布置作业。 10、错题集的习惯。每次考试之后,90 多分的、50 多分的、30 多分的同学,如何整理错题?扔掉的分数就不要了,这次 30 分,下次 40 分,这就是伟大的成绩。找到可以接受的类型题、同等程度的知识点研究一下提高的办法。整理错题集是很多同学公认的好习惯。 11、出考试题的习惯。自己应该觉得考试不神秘。高中自己应该会出高考试题, 初中自己会出中考试题。 12、筛选资料、总结的习惯。自己要会根据自己实际,选择学习资料。 十二个习惯,不要求齐头并进,每个同学要有自己的特点,让老师以教书为乐, 让自己以学习为快乐。这快乐要建立在养成这些良好习惯的基础上。祝大家更多地享受到学习的快乐!

    上传时间:2023-04-29 页数:142

    543人已阅读

    (5星级)

  • 中考数学冲刺:创新、开放与探究型问题(基础).doc

    中考冲刺:创新、开放与探究型问题(基础)一、选择题1.若自然数n使得三个数的加法运算n+(n+1)+(n+2)产生进位现象,则称n为连加进位数.例如:2不是连加进位数,因为2+3+4=9不产生进位现象;4是连加进位数,因为4+5+6=15产生进位现象;51是连加进位数,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到连加进位数的概率是()A.0.88 B.0.89  C.0.90 D.0.912.如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有(   ) A.1个 B.2个 C.3个 D.4个3.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为() A.226    B.181    C.141    D.106二、填空题4.(2015秋•淮安校级期中)电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P0点,BP0=4.第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2 跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第2015次落点为P2016,则P3与P2016之间的距离为______. 5.下图为手的示意图,在各个手指间标记字母A,B,C,D,请你按图中箭头所指方向(如A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,1…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).6. (1)如图(a),∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.(2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC≌△ADE.三、解答题7.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(点E不与B,C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题目的条件梯形ABCD中,AD∥BC,AB=DC改为另一种四边形,其他条件不变,使得结论四边形EFOG的周长等于2OB仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.8.如图所示,平面直角坐标系内有两条直线,,直线的解析式为.如果将坐标纸折叠,使直线与重合,此时点(-2,0)与点(0,2)也重合.2 (1)求直线的解析式;(2)设直线与相交于点M.问:是否存在这样的直线,使得如果将坐标纸沿直线折叠,点M恰好落在x轴上?若存在,求出直线的解析式;若不存在,请说明理由.9.(2015•黄陂区校级模拟)正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG;(3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由. 10. (2016•天门)如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.3 答案与解析【答案与解析】一、选择题1.【答案】A; 【解析】 不是连加进位数的有0,1,2,10,11,12,20,21,22,30,31,32共有12个. ∴P(取到连

    上传时间:2023-04-30 页数:9

    393人已阅读

    (5星级)

  • 中考数学冲刺:创新、开放与探究型问题(提高).doc

    中考冲刺:创新、开放与探究型问题(提高)一、选择题1. (2016•重庆校级二模)下列图形都是由同样大小的平行四边形按一定的规律组成.其中,第①个图形中一共有1个平行四边1.(2016•重庆校级二模)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为() A.61    B.63    C.76    D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设 Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为()   A. B. C. D. 3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是(  )A.495 B.497 C.501 D.503二、填空题4. (2015•合肥校级三模)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.1(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)5. 一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大. (1)使图①花圃面积为最大时R-r的值为____,以及此时花圃面积为____,其中R、r分别为大圆和小圆的半径(2)若L=160 m,r=10 m,使图面积为最大时的θ值为______.6.如图所示,已知△ABC的面积,在图(a)中,若,则;在图(b)中,若,则;在图(c),若,则.…按此规律,若,则________.2 三、解答题7.(2016•丹东模拟)已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由. 8. 如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.39. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=a,在线段BC上任取一点P(P不与B

    上传时间:2023-04-30 页数:12

    502人已阅读

    (5星级)

  • 中考数学冲刺:创新、开放与探究型问题--巩固练习(基础).doc

    中考冲刺:创新、开放与探究型问题—巩固练习(基础)【巩固练习】一、选择题1.若自然数n使得三个数的加法运算n+(n+1)+(n+2)产生进位现象,则称n为连加进位数.例如:2不是连加进位数,因为2+3+4=9不产生进位现象;4是连加进位数,因为4+5+6=15产生进位现象;51是连加进位数,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到连加进位数的概率是()A.0.88 B.0.89 C.0.90D.0.912.如图,点A,B,P在⊙O上,且∠APB=50°,若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个 B.2个 C.3个 D.4个3.(2016秋•永定区期中)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑧个图形中棋子的颗数为()A.226B.181C.141D.106二、填空题4.(2015秋•淮安校级期中)电子跳蚤游戏盘为△ABC,AB=8,AC=9,BC=10,如果电子跳蚤开始时在BC边上的P0点,BP0=4.第一步跳蚤跳到AC边上P1点,且CP1=CP0;第二步跳蚤从P1跳到AB边上P2点,且AP2=AP1;第三步跳蚤从P2 跳回到BC边上P3点,且BP3=BP2;…跳蚤按上述规则跳下去,第2015次落点为P2016,则P3与P2016之间的距离为.5.下图为手的示意图,在各个手指间标记字母A,B,C,D,请你按图中箭头所指方向(如1A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是________;当字母C第201次出现时,恰好数到的数是________;当字母C第2n+1次出现时(n为正整数),恰好数到的数是________(用含n的代数式表示).6. (1)如图(a),∠ABC=∠DCB,请补充一个条件:________,使△ABC≌△DCB.(2)如图(b),∠1=∠2,请补充一个条件:________,使△ABC≌△ADE.三、解答题7.如图所示,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(点E不与B,C两点重合),EF∥BD交AC于点F,EG∥AC交BD于点G.(1)求证:四边形EFOG的周长等于2OB;(2)请你将上述题目的条件梯形ABCD中,AD∥BC,AB=DC改为另一种四边形,其他条件不变,使得结论四边形EFOG的周长等于2OB仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明.8.如图所示,平面直角坐标系内有两条直线1l,2l,直线1l的解析式为213yx.如果将坐标纸折叠,使直线1l与2l重合,此时点(-2,0)与点(0,2)也重合.2(1)求直线2l的解析式;(2)设直线1l与2l相交于点M.问:是否存在这样的直线:lyxt,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上?若存在,求出直线l的解析式;若不存在,请说明理由.9.(2015•黄陂区校级模拟)正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG; (3)在(2)的条件下,如果=,那么点G是否一定是边CD的中点?请说明你的理由.10. (2016•天门)如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.3【答案与解析】一、选择题1.【答案】A;【解析】不是连加进位数的有0,1,2,10,11,12,20,21,22,30,31,32共有12个.∴P(取到连加进位数)=100120.88100.2.【答案】D;【解析】如图,①过圆点O作AB的垂线交AB和APB于M1,M2.②以B为圆心AB为半径作弧交圆O于M3.③以A为圆心,AB为半径弧作弧交圆O于M4.则M1,M2,M3,M4都满足要求.3.【答案】C;【解析】设第n个图形中棋子的颗数

    上传时间:2023-04-30 页数:9

    421人已阅读

    (5星级)

  • 中考数学冲刺:创新、开放与探究型问题--巩固练习(提高).doc

    中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1.(2016•重庆校级二模)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心圆圈的个数为()A.61 B.63 C.76 D.782.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为()  A.512532B.69352C.614532 D.7113523.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是()A.495B.497C.501D.503二、填空题4.(2015•合肥校级三模)如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.1(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是   个,最少是   个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是   个,最少是   个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是   个;最少是   个.(n是正整数)5. 一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R-r的值为 ,以及此时花圃面积为 ,其中R、r分别为大圆和小圆的半径;(2)若L=160 m,r=10 m,使图面积为最大时的θ值为 .6.如图所示,已知△ABC的面积1ABCS△,在图(a)中,若11112AABBCCABBCCA,则11114ABCS△;在图(b)中,若22213AABBCCABBCCA,则222ABC13S△;在图(c),若33314AABBCCABBCCA,则333716ABCS△.…按此规律,若88819AABBCCABBCCA,则888ABCS△________.2三、解答题7.(2016•丹东模拟)已知,点D为直线BC上一动点(点D不与点B、C重合),∠BAC=90°,AB=AC,∠DAE=90°,AD=AE,连接CE.(l)如图1,当点D在线段BC上时,求证:①BD⊥CE,②CE=BC﹣CD;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CE、BC、CD三条线段之间的关系;(3)如图3,当点O在线段BC的反向延长线上时,且点A、E分别在直线BC的两侧,点F是DE的中点,连接AF、CF,其他条件不变,请判断△ACF的形状,并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点3P(P不与B,C重合),连接DP,作射线.PE⊥DP,PE与

    上传时间:2023-04-30 页数:11

    462人已阅读

    (5星级)

  • 中考数学冲刺:创新、开放与探究型问题--知识讲解(基础).doc

    中考冲刺:创新、开放与探究型问题—知识讲解(基础)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑: 1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探究规律1.观察下列各式:222211,333322,444433,,…想一想,什么样的两数之积等于这两数之和?设n表示正整数,用关于n的等式表示这个规律.【思路点拨】 所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,因此得出规律.【答案与解析】所给各式中的两个数中,一个是分数,一个是整数,且分数的分子比分母大1,分子与整数相等,1因此得到规律:11(1)(1)nnnnnn(n为正整数)【总结升华】这个规律是否正确呢?可将等式左右两边分别化简,即能得出结论.对于数字规律的观察,要善于发现其中的变量与不变量,以及变量与项数之间的关系,将规律用代数式表示出来.举一反三:【变式】(2015秋•日照期中)如图,把一条绳子折成3折,用剪刀从中剪断,如果剪一刀得到4条绳子,如果剪两刀得到7条绳子,如果剪三刀得到10条绳子,…,依照这种方法把绳子剪n刀,得到的绳子的条数为()A.nB.4n+5C.3n+1D.3n+4【答案】C【解析】解:设段数为x则依题意得:n=0时,x=1,n=1,x=4,n=2,x=7,n=3,x=10,…所以当n=n时,x=3n+1.故选:C.类型二、条件开放型2.如图所示,四边形ABCD是矩形,O是它的中心,E,F是对角线AC上的点.(1)若________________________,则△DEC≌△BFA(请你填上能使结论成立的一个条件);(2)证明你的结论.【思路点拨】(1)已知了一边AD=BC,和一角(AD∥BC,∠DAC=∠BCA)相等.根据全等三角形的判定AAS、SAS、ASA等,只要符合这些条件的都可以.(2)按照(1)中的条件根据全等三角形的判定进行证明即可.【答案与解析】解:(1)AE=CF;(OE=OF;DE⊥AC,BF⊥AC;DE∥BF等等)(2)以AE=CF为例.∵ 四边形ABCD是矩形,∴AB=CD,AB∥CD,∠DCE=∠BAF.2又∵AE=CF.∴AC-AE=AC-CF.∴AF=CE,∴△DEG≌△BAF.【总结升华】 这是一道探索条件、补充条件的开放型试题,解决这类问题的一般方法是:从结论出发,由果寻因,逆向推理,探寻出使结论成立的条件;有时也采取把可能产生结论的条件一一列出,逐个分析考察.举一反三:【变式】如图,飞机沿水平方向(A,B两点所在直线)飞行,前方有一座高山,为了避免飞机飞行过低,就必须测量山顶M到飞行路线AB的距离MN.飞机能够测量的数据有俯角和飞行距离(因安全因素,飞机不能飞到山顶的正上方N处才测飞行距离),请设计一个求距离MN的方案,要求:(1)指出需要测量的数据(用字母表示,并在图中标出);(2)用测出的数据写出求距离MN的步骤.【答案】解:此题为开放题,答案不唯一,只要方案设计合理,可参照给分⑴如图,测出飞机在A处对山顶的俯角为,测出飞机在B处对山顶的俯角为,测出AB的距离为d,连接AM,BM.⑵第一步,在AMNRt中,ANMNtan ∴tanMNAN

    上传时间:2023-04-30 页数:9

    469人已阅读

    (5星级)

  • 中考数学冲刺:创新、开放与探究型问题--知识讲解(提高).doc

    中考冲刺:创新、开放与探究型问题—知识讲解(提高)【中考展望】所谓开放探索型问题指的是有些数学问题的条件、结论或解决方法不确定或不唯一,需要根据题目的特点进行分析、探索,从而确定出符合要求的答案(一个、多个或所有答案)或探索出解决问题的多种方法.由于开放探究型问题对考查学生思维能力和创造能力有积极的作用,是近几年中考命题的一个热点.通常这类题目有以下几种类型:条件开放与探索,结论开放和探索,条件与结论都开放与探索及方案设计、命题组合型、问题开放型等.【方法点拨】由于开放探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑: 1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不唯一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.【典型例题】类型一、探索规律1.(2015•武汉校级二模)如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,C1B=CB,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2014,最少经过()次操作.1A.7B.6C.5D.4【思路点拨】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【答案】D.【解析】解:△ABC与△A1BB1底相等(AB=A1B),高为1:2(BB1=2BC),故面积比为1:2,∵△ABC面积为1,∴SA1B1B△=2.同理可得,SC1B1C△=2,SAA1C△=2,∴SA1B1C1△=SC1B1C△+SAA1C△+SA1B1B△+SABC△=2+2+2+1=7;同理可证△A2B2C2的面积=7×A△1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2014,最少经过4次操作.故选D.【总结升华】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.举一反三:【变式】(2016•抚顺)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为  .【答案与解析】解:∵△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的2中心,∴A3的坐标为(0, ),∵2016÷3=672,∴A2016是第672个等边三角形的第3个顶点,∴点A2016的坐标为(0,×),即点A2016的坐标为(0,448);故答案为:(0,448).类型二、条件开放型、结论开放型2.在平面直角坐标系中,等腰三角形ABC的顶点A的坐标为(2,2).(1)若底边BC在x轴上,请写出一组满足条件的点B、点C的坐标: ; (2)若底边BC的两端点分别在x轴、y轴上,请写出一组满足条件的点B、点C的坐标: . 【思路点拨】(1)首先由BC在x轴上,在等腰△ABC中,即可过顶点A作AD⊥BC交BC于D,根据三线合一的性质,可得BD=CD,即B,C关于点D对称,则可求得满足条件的点B、点C的坐标;(2)连接OA,由等腰三角形ABC的顶点A的坐标为(2,2),易证得△AOB≌△AOC,则可知OB=OC,继而可得满足条件的点B、点C的坐标.【答案与解析】解:(1)∵BC在x轴上,在等腰△ABC中

    上传时间:2023-04-30 页数:12

    558人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题(基础).doc

    中考冲刺:代几综合问题(基础)一、选择题1.(2017•河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.  B.  C.D.2. 如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是(  )二、填空题3. 将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象如图所示,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t=______.4. (2017•宝山区一模)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,1如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC=8,tanA=,那么CF:DF=______.三、解答题5. 一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n层所对应的点数;(2)试写出n层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?   6. 如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由 7. 阅读理解:对于任意正实数a、b,∵ 2结论:在a+b≥2(a、b均为正实数)中,若a.b为定值p,则a+b≥2 ,只有当a=b时,a+b有最小值2根据上述内容,回答下列问题:(1)若m>0,只有当m=____________时,m+有最小值,最小值为____________;(2)探究应用:已知A(-3,0)、B(0,-4),点P为双曲线y=(x>0)上的任一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.  8. (深圳期末)如图,平面直角坐标系中,直线AB:y=﹣x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点.(1)直接写出A、B的坐标;A______,B______;(2)是否存在点P,使得△AOP的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.(3)是否存在点P使得△ABP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标;(3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发3沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S=时,在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形,求出点R的坐标.10.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=x交于点B、C(B在右、C在左).(1)求抛物线的解析式; (2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以

    上传时间:2023-04-30 页数:13

    415人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题(提高).doc

    中考冲刺:代几综合问题(提高)一、选择题1.(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()  A.  B. C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为(  ) 二、填空题3. 在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的 C点的坐标为______________.4.(2016•梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的1坐标是______.三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形. 6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒)  (1)求线段AB的长;当t为何值时,MN∥OC?  (2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 7. 条件:如下图,A、B是直线l同旁的两个定点.2问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8. 如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由. 9. 如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,

    上传时间:2023-04-30 页数:14

    430人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题--巩固练习(基础).doc

    中考冲刺:代几综合问题—巩固训练(基础)【巩固练习】一、选择题1.(2017•河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.2.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()二、填空题3. 将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象如图所示,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,则t=.14. (2017•宝山区一模)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC=8,tanA=,那么CF:DF=   . 三、解答题5.一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点……依次类推.(1)试写出第n层所对应的点数;(2)试写出n层六边形点阵的总点数;(3)如果一个六边形点阵共有169个点,那么它一共有几层?6.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒.(1)用含x的代数式表示BQ、PB的长度;(2)当x为何值时,△PBQ为等腰三角形;(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在,请求出此时x的值;若不存在,请说明理由.7.阅读理解:对于任意正实数a、b,∵2()0,ab220,2,aabbababab只有当时,等号成立。结论:在a+b≥2ab(a、b均为正实数)中,若a•b为定值p,则a+b≥2p ,只有当a=b时,a+b有最小值2p. 根据上述内容,回答下列问题:(1)若m>0,只有当m=____________时,m+1m有最小值,最小值为____________;(2)探究应用:已知A(-3,0)、B(0,-4),点P为双曲线y=12x(x>0)上的任一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.8.(深圳期末)如图,平面直角坐标系中,直线AB:y=﹣x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点.(1)直接写出A、B的坐标;A   ,B;(2)是否存在点P,使得△AOP的周长最小?若存在,请求出周长的最小值;若不存在,请说明理由.(3)是否存在点P使得△ABP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,32).3(1)求抛物线的解析式;(2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标; (3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S=54时,在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形,求出点R的坐标.yBAOx1221-1-1C10.已知:抛物线y=-x2+2x+m-2交y轴于点A(0,2m-7).与直线y=2x交于点B、C(B在右、C在左).(1)求抛物线的解析式; (2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得BFECFE,若存在,求出点F的坐标,若不存在,说明理由;(3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,若△PMQ与抛物线y=-x2+2x+m-2有公共点,求t的取值范围.11. 在平面直角坐标系xOy中

    上传时间:2023-04-30 页数:13

    845人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题--巩固练习(提高).doc

    中考冲刺:代几综合问题—知识讲解(提高)【巩固练习】一、选择题1.(2016•鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是()A.B. C.D.2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函数关系的图象大致为( )二、填空题13.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC是直角三角形,则满足条件的C点的坐标为______________.4.(2016•梧州)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到An(n为正整数)点时,则An的坐标是   .三、解答题5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?(3)当t为何值时,△EDQ为直角三角形.6.如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(3,4),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少? 27.条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.8.如图,四边形OABC是一张放在平面直角坐标系的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=15,OC=9,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作N点.(1)求N点、M点的坐标;(2)将抛物线y=x2﹣36向右平移a(0<a<10)个单位后,得到抛物线l,l经过点N,求抛物线l的解析式;(3)①抛物线l的对称轴上存在点P,使得P点到M、N两点的距离之差最大,求P点的坐标;②若点D是线段OC上的一个动点(不与O、C重合),过点D作DE∥OA交CN于E,设CD的长为m,△PDE的面积为S,求S与m之间的函数关系式,并说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.39.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.10.(2015•成都)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐

    上传时间:2023-04-30 页数:14

    448人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题--知识讲解(基础).doc

    中考冲刺:代几综合问题—知识讲解(基础)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为认真审题、理解题意;探求解题思路;正确解答三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1. 几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3. 几何论证题主要考查学生综合应用所学几何知识的能力.4. 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2) 注意推理和计算相结合,力求解题过程的规范化;(3) 注意掌握常规的证题思路,常规的辅助线作法;(4) 注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10,则CE的长为_________.1【思路点拨】过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG.求证△BEC≌△BGM,△ABE≌△ABG,设CE=x,在直角△ADE中,根据AE2=AD2+DE2求x的值,即CE的长度.【答案与解析】解:过B作DA的垂线交DA的延长线于M,M为垂足,延长DM到G,使MG=CE,连接BG,∴∠AMB=90°,∵AD∥CB,∠DCB=90°,∴∠D=90°,∴∠AMB=∠DCB=∠D=90°,∴四边形BCDM为矩形.∵BC=CD,∴四边形BCDM是正方形,∴BC=BM,且∠ECB=∠GMB,MG=CE,∴Rt△BEC≌Rt△BGM.∴BG=BE,∠CBE=∠GBM,∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°∴∠CBE+∠ABM=45°∴∠ABM+∠GBM=45°∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10.设CE=x,则AM=10-x,AD=12-(10-x)=2+x,DE=12-x,在Rt△ADE中,AE2=AD2+DE2,∴100=(x+2)2+(12-x)2,即x2-10x+24=0;解得:x1=4,x2=6.故CE的长为4或6.【总结升华】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和性质,本题中求证△ABE≌△ABG,从而说明AG=AE=10是解题的关键.类型二、函数与几何问题22.如图,二次函数y =(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上

    上传时间:2023-04-30 页数:11

    441人已阅读

    (5星级)

  • 中考数学冲刺:代几综合问题--知识讲解(提高).doc

    中考冲刺:代几综合问题—知识讲解(提高)【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为认真审题、理解题意;探求解题思路;正确解答三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化,从函数关系中点与线的位置、方程根的情况得出图形中的几何关系.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1. 几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2. 几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3. 几何论证题主要考查学生综合应用所学几何知识的能力.4. 解几何综合题应注意以下几点:(1) 注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2) 注意推理和计算相结合,力求解题过程的规范化;(3) 注意掌握常规的证题思路,常规的辅助线作法;(4) 注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.(2015•大庆模拟)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?1(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)【思路点拨】(1)先在Rt△ABC中,由勾股定理求出AB=10,再由BP=t,AQ=2t,得出AP=10﹣t,然后由PQ∥BC,根据平行线分线段成比例定理,列出比例式,求解即可;(2)正确把四边形PQCB表示出来,即可得出y关于t的函数关系式;(3)根据四边形PQCB面积是△ABC面积的,列出方程,解方程即可;(4)△AEQ为等腰三角形时,分三种情况讨论:①AE=AQ;②EA=EQ;③QA=QE,每一种情况都可以列出关于t的方程,解方程即可.【答案与解析】解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,∴=,∴=,解得t=;(2)∵S四边形PQCB=S△ACB﹣S△APQ=AC•BC﹣AP•AQ•sinA∴y=×6×8﹣×(10﹣t)•2t•=24﹣t(10﹣t)=t2﹣8t+24,即y关于t的函数关系式为y=t2﹣8t+24;(3)四边形PQCB面积能是△ABC面积的,理由如下:2由题意,得t

    上传时间:2023-04-30 页数:14

    431人已阅读

    (5星级)

  • 中考数学冲刺:代数综合问题(基础).doc

    中考冲刺:代数综合问题(基础)一、选择题1. 如图所示,已知函数和y=kx(k≠0)的图象交于点P,则根据图象可得,关于的二元一次方程组的解是(  ) A.  B.  C.  D.2.(2016•河北模拟)如图,点A是x轴正半轴上的任意一点,过点A作EF∥y轴,分别交反比例函数和的图象于点E、F,且,连接OE、OF,有下列结论:①这两个函数的图象关于x轴对称;②△EOF的面积为(k1﹣k2);③;④当∠EOF=90°时,,其中正确的是()A.①③ B.②④  C.①④  D.②③3.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.1④在反比例函数中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确的命题有(  )A. 1 个 B. 2 个  C. 3 个  D. 4 个二、填空题4.如图所示,是二次函数(a≠0)和一次函数(n≠0)的图象,观察图象写出y2≥y1时,x的取值范围______________.   5.已知二次函数若此函数图象的顶点在直线y=-4上,则此函数解析式为______.6. (2016•历下区二模)已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:①abc<0;②4a+2b+c>0;③b2﹣4ac<0;④b>a+c;⑤a+2b+c>0,其中正确的结论有______. 三、解答题7.(北京校级期中)已知关于x的一元二次方程mx2﹣(m+1)x+1=0(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m的整数值;(3)在(2)中开口向上的抛物线y=mx2﹣(m+1)x+1与x轴交于点A,与y轴交于点B,直线y=﹣x上有一个动点P.求使PA+PB取得最小值时的点P的坐标,并求PA+PB的最小值.2 8. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大? 9. 已知P()和Q(1,)是抛物线上的两点.(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值.10. 已知:关于x的一元二次方程,其中.(1)求此方程的两个实数根(用含m的代数式表示);3(2)设抛物线与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式;(3)已知点E(a,)、F(2a,y)、G(3a,y)都在(2)中的抛物线上,是否存在含有、y、y,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由. 答案与解析【答案与解析】一、选择题1.【答案】C; 【解析】本题考查方程组的解(数)与直线交点(形)坐标之间的关系.2.【答案】B; 【解析】①∵点E在反比例函数的图象上, 点F在反比例函数的图象上,且, ∴k1=OA•EA,k2=﹣OA•FA, ∴, ∴这两个函数的图象不关于x轴对称,即①错误; ②∵点E在反比例函数y1=的图象上,点F在反比例函数y2=的图象上, ∴S△OAE=k1,S△OAF=﹣k2, ∴S△OEF=S△OAE+S△OAF=(k1﹣k2),即②正确; ③由①可知,∴③错误; ④设EA=5a,OA=b,则FA=3a, 由勾股定理可知:OE=,OF=. ∵∠EOF=90°,∴OE2+OF2=EF2,即25a2+b2+9a2+b2=64a2,∴b2=15a2, ∴=,④正确.

    上传时间:2023-04-30 页数:8

    602人已阅读

    (5星级)

  • 中考数学冲刺:代数综合问题(提高).doc

    中考冲刺:代数综合问题(提高)一、选择题1. 如图,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,对角线OC、AB交于点D,点E、F、G分别是CD、BD、BC的中点,以O为原点,直线OB为x轴建立平面直角坐标系,则G、E、D、F四个点中与点A在同一反比例函数图象上的是(  ) A.点G B.点E C.点D D.点F2.已知函数y=,若使y=k成立的x值恰好有三个,则k的值为() A.0  B.1  C.2  D.33.(2016秋•重庆校级月考)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②4ac﹣b2=0;③a>2;④4a﹣2b+c>0.其中正确的个数是()A.1   B.2    C.3    D.4二、填空题4.若a+b-2-4=3- c-5,则a+b+c的值为______.5.已知关于x的方程x2+(k-5)x+9=0在1<x<2内有一实数根,则实数k的取值范围是______.6. (和平区校级期中)关于x的方程,2kx2-2x-3k=0的两根一个大于1,一个小于1,则实数k的的取值范围是______.三、解答题7.(2016•梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.1(2)若方程两实根x1、x2满足x1+x2=﹣x1•x2,求k的值.8. 已知关于的一元二次方程.(1)求证:不论取何值时,方程总有两个不相等的实数根.(2)若直线与函数的图象的一个交点的横坐标为2,求关于的一元二次方程的解.(3)在(2)的条件下,将抛物线绕原点旋转,得到图象,点为轴上的一个动点,过点作轴的垂线,分别与图象、交于两点,当线段的长度最小时,求点的坐标   9. 抛物线,a>0,c<0,.(1)求证:;(2)抛物线经过点,Q.① 判断的符号;② 若抛物线与x轴的两个交点分别为点A,点B(点A在点B左侧),请说明,.10. 已知:二次函数y=.(1)求证:此二次函数与x轴有交点;(2)若m-1=0,求证方程有一个实数根为1;(3)在(2)的条件下,设方程的另一根为a,当x=2时,关于n 的函数与的图象交于点A、B(点A在2点B的左侧),平行于y轴的直线L与、的图象分别交于点C、D,若CD=6,求点C、D的坐标.答案与解析【答案与解析】一、选择题1.【答案】A; 【解析】 在直角梯形AOBC中 ∵AC∥OB,CB⊥OB,OB=18,BC=12,AC=9 ∴点A的坐标为(9,12) ∵点G是BC的中点 ∴点G的坐标是(18,6) ∵9×12=18×6=108 ∴点G与点A在同一反比例函数图象上,故选A.2.【答案】D; 【解析】 函数y=的图象如图: 根据图象知道当y=3时,对应成立的x有恰好有三个,∴k=3.故选D.3.【答案】B; 【解析】①∵抛物线开口朝上,∴a>0. ∵抛物线的对称轴为x=﹣=﹣1,∴b=2a>0. 当x=0时,y=c+2>2,∴c>0.∴abc>0,①错误; ②∵抛物线与x轴只有一个交点, ∴b2﹣4a(c+2)=b2﹣4ac﹣8a=0, ∴b2﹣4ac=8a>0,②错误; ③∵抛物线的顶点为(﹣1,0), ∴抛物线解析式为y=a(x+1)2=ax2+2ax+a=ax2+bx+c+2, ∴a=c+2>2,③正确; ④∵b=2a,c>0, ∴4a﹣2b+c=c>0,④正确. 故选B.二、填空题34.【答案】20; 【解析】整理得:(a-1-2+1)+(b-2-4+4)+(c-3-6+9)=0 (-1)2+(-2)2+(-3)2=0, ∴=1,=2,=3, ∵a≥1,b≥2,c≥3, ∴a=2,b=6,c=12, ∴a+b+c=20. 故答案为: 20.5.【答案】 【解析】利用数形结合的方法将问题转化成二次函数y= x2+(k-5)x+9图象开口向上,与x轴的一个交点的 横坐标在1<x<2内,故有两种情况,分析得出结论.6.【答案】k>0或k<-2. 【解析】设y=2kx2-2x-3k, ∵方程2kx2-2x-3k=0d的两根

    上传时间:2023-04-30 页数:8

    422人已阅读

    (5星级)

  • 中考数学冲刺:代数综合问题--巩固练习(基础).doc

    中考冲刺:代数综合问题—巩固练习(基础)【巩固练习】一、选择题1. 如图所示,已知函数(0)yaxba和y=kx(k≠0)的图象交于点P,则根据图象可得,关于,.yaxbykx的二元一次方程组的解是()A.42xyB.42xyC.42xyD.42xy2.(2016•河北模拟)如图,点A是x轴正半轴上的任意一点,过点A作EF∥y轴,分别交反比例函数和的图象于点E、F,且,连接OE、OF,有下列结论:①这两个函数的图象关于x轴对称;②△EOF的面积为(k1﹣k2);③;④当∠EOF=90°时,,其中正确的是()A.①③ B.②④ C.①④ D.②③3.下列说法中①若式子1x有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.1③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数2kyx中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确的命题有()A. 1 个 B. 2 个C. 3 个D. 4 个二、填空题4.如图所示,是二次函数21yaxbxc(a≠0)和一次函数2ymxn(n≠0)的图象,观察图象写出y2≥y1时,x的取值范围____ ____. 5.已知二次函数22(1)2(1)yxmxm.若此函数图象的顶点在直线y=-4上,则此函数解析式为.6. (2016•历下区二模)已知二次函数y=ax2+bx+c的图象如图所示,有下列5个结论:①abc<0;②4a+2b+c>0;③b2﹣4ac<0;④b>a+c;⑤a+2b+c>0,其中正确的结论有   .三、解答题7.(北京校级期中)已知关于x的一元二次方程mx2﹣(m+1)x+1=0(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m的整数值;(3)在(2)中开口向上的抛物线y=mx2﹣(m+1)x+1与x轴交于点A,与y轴交于点B,直线y=﹣x上有一个动点P.求使PA+PB取得最小值时的点P的坐标,并求PA+PB的最小值.28. 善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x(单位:分钟)与学习收益量y的关系如图1所示,用于回顾反思的时间x(单位:分钟)与学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?9. 已知P(3,m)和Q(1,m)是抛物线221yxbx上的两点.(1)求b的值;(2)判断关于x的一元二次方程221xbx=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线221yxbx的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.10. 已知:关于x的一元二次方程04)4(2mxmx,其中40m.(1)求此方程的两个实数根(用含m的代数式表示);3(2)设抛物线cbxxy2与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式;(3)已知点E(a,1y)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有1y、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.【答案与解析】一、选择题1.【答案】C;【解析】本题考查方程组的解(数)与直线交点(形)坐标之间的关系.2.【答案】B;【解析】①∵点E在反比例函数的图象上,点F在反比例函数的图象上,且,∴k1=OA•EA,k2=﹣OA•FA,∴,∴这两个函数的图象不关于x轴对称,即①错误;②∵点E在反比例函数y1=的图象上,点F在反比例函数y2=的图象上,∴S△OAE=k1,S△OAF=﹣k2,∴S△OEF=S△OAE+S△OAF=(k1k﹣2),即②正确;③由①可知,∴③错误;④设EA=5a,OA=b,则FA=3a,由勾股定理可知:OE=,OF=.∵∠EOF=90°,∴OE2+OF2=EF2,即25a2+b2+9a2+b2=64a2,∴b2=15a2,4∴=,④正确.综上可知:正

    上传时间:2023-04-30 页数:8

    328人已阅读

    (5星级)

客服

客服QQ:

2505027264


客服电话:

18182295159

微信小程序

微信公众号

回到顶部